PHANGS-MeerKAT and MHONGOOSE HI observations of nearby spiral galaxies: Physical drivers of the molecular gas fraction, Rmol
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A90106%2F24%3A00617499" target="_blank" >RIV/67985815:90106/24:00617499 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/0004-6361/202449944" target="_blank" >https://doi.org/10.1051/0004-6361/202449944</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202449944" target="_blank" >10.1051/0004-6361/202449944</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PHANGS-MeerKAT and MHONGOOSE HI observations of nearby spiral galaxies: Physical drivers of the molecular gas fraction, Rmol
Popis výsledku v původním jazyce
The molecular-to-atomic gas ratio is crucial to our understanding of the evolution of the interstellar medium (ISM) in galaxies. We investigated the balance between the atomic (Sigma(HI)) and molecular gas (Sigma(H2)) surface densities in eight nearby star-forming galaxies using new high-quality observations from MeerKAT and ALMA (for H I and CO, respectively). We defined the molecular gas ratio as R-mol = Sigma(H2)/Sigma(HI) and measured how R-mol depends on local conditions in the galaxy disks using multiwavelength observations. We find that, depending on the galaxy, H I is detected at > 3 sigma out to 20 120 kpc in galactocentric radius (r(gal)). The typical radius at which Sigma(HI) reaches 1 M-circle dot pc(-2) is r(H I) approximate to 22 kpc, which corresponds to 1 3 times the optical radius (r(25)). We note that, R-mol correlates best with the dynamical equilibrium pressure, P-DE, among potential drivers studied, with a median correlation coefficient of <rho > = 0.89. Correlations between R-mol and the star formation rate surface density, total gas surface density, stellar surface density, metallicity, and Sigma(SFR)/P-DE (a proxy for the combined effect of the UV radiation field and number density) are present but somewhat weaker. Our results also show a direct correlation between P-DE and Sigma(SFR), supporting self-regulation models. Quantitatively, we measured similar scalings as previous works, and attribute the modest differences that we do find to the effect of varying resolution and sensitivity. At r(gal) greater than or similar to 0.4r(25), atomic gas dominates over molecular gas among our studied galaxies, and at the balance of these two gas phases (R-mol = 1), we find that the baryon mass is dominated by stars, with Sigma(*) > 5 Sigma(gas). Our study constitutes an important step in the statistical investigation of how local galaxy properties (stellar mass, star formation rate, or morphology) impact the conversion from atomic to molecular gas in nearby galaxies.
Název v anglickém jazyce
PHANGS-MeerKAT and MHONGOOSE HI observations of nearby spiral galaxies: Physical drivers of the molecular gas fraction, Rmol
Popis výsledku anglicky
The molecular-to-atomic gas ratio is crucial to our understanding of the evolution of the interstellar medium (ISM) in galaxies. We investigated the balance between the atomic (Sigma(HI)) and molecular gas (Sigma(H2)) surface densities in eight nearby star-forming galaxies using new high-quality observations from MeerKAT and ALMA (for H I and CO, respectively). We defined the molecular gas ratio as R-mol = Sigma(H2)/Sigma(HI) and measured how R-mol depends on local conditions in the galaxy disks using multiwavelength observations. We find that, depending on the galaxy, H I is detected at > 3 sigma out to 20 120 kpc in galactocentric radius (r(gal)). The typical radius at which Sigma(HI) reaches 1 M-circle dot pc(-2) is r(H I) approximate to 22 kpc, which corresponds to 1 3 times the optical radius (r(25)). We note that, R-mol correlates best with the dynamical equilibrium pressure, P-DE, among potential drivers studied, with a median correlation coefficient of <rho > = 0.89. Correlations between R-mol and the star formation rate surface density, total gas surface density, stellar surface density, metallicity, and Sigma(SFR)/P-DE (a proxy for the combined effect of the UV radiation field and number density) are present but somewhat weaker. Our results also show a direct correlation between P-DE and Sigma(SFR), supporting self-regulation models. Quantitatively, we measured similar scalings as previous works, and attribute the modest differences that we do find to the effect of varying resolution and sensitivity. At r(gal) greater than or similar to 0.4r(25), atomic gas dominates over molecular gas among our studied galaxies, and at the balance of these two gas phases (R-mol = 1), we find that the baryon mass is dominated by stars, with Sigma(*) > 5 Sigma(gas). Our study constitutes an important step in the statistical investigation of how local galaxy properties (stellar mass, star formation rate, or morphology) impact the conversion from atomic to molecular gas in nearby galaxies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
691
Číslo periodika v rámci svazku
Nov.
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
24
Strana od-do
A163
Kód UT WoS článku
001353369000006
EID výsledku v databázi Scopus
2-s2.0-85209678609