Moving inhomogeneous envelopes of stars
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F16%3A00470024" target="_blank" >RIV/67985815:_____/16:00470024 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jqsrt.2016.06.017" target="_blank" >http://dx.doi.org/10.1016/j.jqsrt.2016.06.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jqsrt.2016.06.017" target="_blank" >10.1016/j.jqsrt.2016.06.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Moving inhomogeneous envelopes of stars
Popis výsledku v původním jazyce
Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters.
Název v anglickém jazyce
Moving inhomogeneous envelopes of stars
Popis výsledku anglicky
Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BN - Astronomie a nebeská mechanika, astrofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Quantitative Spectroscopy and Radiative Transfer
ISSN
0022-4073
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
Special Issue
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
3
Strana od-do
100-112
Kód UT WoS článku
000385329500010
EID výsledku v databázi Scopus
2-s2.0-85004143308