Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F17%3A00484223" target="_blank" >RIV/67985815:_____/17:00484223 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1093/mnras/stw3354" target="_blank" >http://dx.doi.org/10.1093/mnras/stw3354</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stw3354" target="_blank" >10.1093/mnras/stw3354</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse

  • Popis výsledku v původním jazyce

    We investigate, using 3D hydrodynamic simulations, the fragmentation of pressure-confined, vertically stratified, self-gravitating gaseous layers. The confining pressure is either thermal pressure acting on both surfaces or thermal pressure acting on one surface and ram pressure on the other. In the linear regime of fragmentation, the dispersion relation we obtain agrees well with that derived by Elmegreen & Elmegreen, and consequently deviates from the dispersion relations based on the thin shell approximation or pressure assisted gravitational instability. In the non-linear regime, the relative importance of the confining pressure to the self-gravity is a crucial parameter controlling the qualitative course of fragmentation. When confinement of the layer is dominated by external pressure, self-gravitating condensations are delivered by a two-stage process: first the layer fragments into gravitationally bound but stable clumps, and then these clumps coalesce until they assemble enough mass to collapse. In contrast, when external pressure makes a small contribution to confinement of the layer, the layer fragments monolithically into gravitationally unstable clumps and there is no coalescence. This dichotomy persists whether the external pressure is thermal or ram. We apply these results to fragments forming in a shell swept up by an expanding H II region, and find that, unless the swept-up gas is quite hot or the surrounding medium has low density, the fragments have low mass (less than or similar to 3M(circle dot)), and therefore they are unlikely to spawn stars that are sufficiently massive to promote sequential self-propagating star formation.

  • Název v anglickém jazyce

    Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse

  • Popis výsledku anglicky

    We investigate, using 3D hydrodynamic simulations, the fragmentation of pressure-confined, vertically stratified, self-gravitating gaseous layers. The confining pressure is either thermal pressure acting on both surfaces or thermal pressure acting on one surface and ram pressure on the other. In the linear regime of fragmentation, the dispersion relation we obtain agrees well with that derived by Elmegreen & Elmegreen, and consequently deviates from the dispersion relations based on the thin shell approximation or pressure assisted gravitational instability. In the non-linear regime, the relative importance of the confining pressure to the self-gravity is a crucial parameter controlling the qualitative course of fragmentation. When confinement of the layer is dominated by external pressure, self-gravitating condensations are delivered by a two-stage process: first the layer fragments into gravitationally bound but stable clumps, and then these clumps coalesce until they assemble enough mass to collapse. In contrast, when external pressure makes a small contribution to confinement of the layer, the layer fragments monolithically into gravitationally unstable clumps and there is no coalescence. This dichotomy persists whether the external pressure is thermal or ram. We apply these results to fragments forming in a shell swept up by an expanding H II region, and find that, unless the swept-up gas is quite hot or the surrounding medium has low density, the fragments have low mass (less than or similar to 3M(circle dot)), and therefore they are unlikely to spawn stars that are sufficiently massive to promote sequential self-propagating star formation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP209%2F12%2F1795" target="_blank" >GAP209/12/1795: Tvorba hvězd aktivovaná expandujícími obálkami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

  • Svazek periodika

    466

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    4423-4441

  • Kód UT WoS článku

    000402849400048

  • EID výsledku v databázi Scopus