Interior potential of a toroidal shell from pole values
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F19%3A00518042" target="_blank" >RIV/67985815:_____/19:00518042 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/mnras/stz1226" target="_blank" >https://doi.org/10.1093/mnras/stz1226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stz1226" target="_blank" >10.1093/mnras/stz1226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interior potential of a toroidal shell from pole values
Popis výsledku v původním jazyce
We have investigated the toroidal analogue of ellipsoidal shells of matter, which are of great significance in Astrophysics. The exact formula for the gravitational potential klf (R, Z)of a shell with a circular section at the pole of toroidal coordinates is first established. It depends on the mass of the shell, its main radius and axial ratio e (i.e. core-to-main radius ratio), and involves the product of the complete elliptic integrals of the first and second kinds.Numerical experiments confirm the great reliability of the approach, in particular for small-to-moderate axial ratios (e2 < 0.1 typically). In contrast with the ellipsoidal case (Newton's theorem), the potential is 1101 uniform inside the shell cavity as a consequence of the curvature. We explain how to construct the interior potential of toroidal shells with a thick edge (i.e. tubes), and how a core stratification can be accounted for. This is a new step towards the full description of the gravitating potential and forces of tori and rings. Applications also concern electrically charged systems, and thus go beyond the context of gravitation.
Název v anglickém jazyce
Interior potential of a toroidal shell from pole values
Popis výsledku anglicky
We have investigated the toroidal analogue of ellipsoidal shells of matter, which are of great significance in Astrophysics. The exact formula for the gravitational potential klf (R, Z)of a shell with a circular section at the pole of toroidal coordinates is first established. It depends on the mass of the shell, its main radius and axial ratio e (i.e. core-to-main radius ratio), and involves the product of the complete elliptic integrals of the first and second kinds.Numerical experiments confirm the great reliability of the approach, in particular for small-to-moderate axial ratios (e2 < 0.1 typically). In contrast with the ellipsoidal case (Newton's theorem), the potential is 1101 uniform inside the shell cavity as a consequence of the curvature. We explain how to construct the interior potential of toroidal shells with a thick edge (i.e. tubes), and how a core stratification can be accounted for. This is a new step towards the full description of the gravitating potential and forces of tori and rings. Applications also concern electrically charged systems, and thus go beyond the context of gravitation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-01137J" target="_blank" >GC19-01137J: Největší černé díry na obloze: vznik a vývoj struktur na škálách horizontu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monthly Notices of the Royal Astronomical Society
ISSN
1365-2966
e-ISSN
—
Svazek periodika
486
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
5656-5669
Kód UT WoS článku
000474908200092
EID výsledku v databázi Scopus
2-s2.0-85067923177