Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Near optimal angular quadratures for polarised radiative transfer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F20%3A00534662" target="_blank" >RIV/67985815:_____/20:00534662 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1051/0004-6361/202037566" target="_blank" >https://doi.org/10.1051/0004-6361/202037566</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202037566" target="_blank" >10.1051/0004-6361/202037566</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Near optimal angular quadratures for polarised radiative transfer

  • Popis výsledku v původním jazyce

    In three-dimensional (3D) radiative transfer (RT) problems, the tensor product quadratures are generally not optimal in terms of the number of discrete ray directions needed for a given accuracy of the angular integration of the radiation field. In this paper, we derive a new set of angular quadrature rules that are more suitable for solving 3D RT problems with the short- and long-characteristics formal solvers. These quadratures are more suitable than the currently used ones for the numerical calculation of the radiation field tensors that are relevant in the problem of the generation and transfer of polarised radiation without assuming local thermodynamical equilibrium (non-LTE). We show that our new quadratures can save up to about 30% of computing time with respect to the Gaussian-trapezoidal product quadratures with the same accuracy.

  • Název v anglickém jazyce

    Near optimal angular quadratures for polarised radiative transfer

  • Popis výsledku anglicky

    In three-dimensional (3D) radiative transfer (RT) problems, the tensor product quadratures are generally not optimal in terms of the number of discrete ray directions needed for a given accuracy of the angular integration of the radiation field. In this paper, we derive a new set of angular quadrature rules that are more suitable for solving 3D RT problems with the short- and long-characteristics formal solvers. These quadratures are more suitable than the currently used ones for the numerical calculation of the radiation field tensors that are relevant in the problem of the generation and transfer of polarised radiation without assuming local thermodynamical equilibrium (non-LTE). We show that our new quadratures can save up to about 30% of computing time with respect to the Gaussian-trapezoidal product quadratures with the same accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-20632S" target="_blank" >GA19-20632S: Dopředné modelování a inverze polarizovaných slunečních spekter ve vícedimenzionálních geometriích</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy & Astrophysics

  • ISSN

    1432-0746

  • e-ISSN

  • Svazek periodika

    636

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    5

  • Strana od-do

    A24

  • Kód UT WoS článku

    000526994900008

  • EID výsledku v databázi Scopus

    2-s2.0-85083301129