Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and their asymptotic gravitational-wave fluxes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00549287" target="_blank" >RIV/67985815:_____/21:00549287 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10429995
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.103.104045" target="_blank" >https://doi.org/10.1103/PhysRevD.103.104045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.103.104045" target="_blank" >10.1103/PhysRevD.103.104045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and their asymptotic gravitational-wave fluxes
Popis výsledku v původním jazyce
We use the frequency and time domain Teukolsky formalism to calculate gravitational-wave fluxes from a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning body is represented as a point particle following the pole-dipole approximation of the Mathisson-Papapetrou-Dixon equations. Reformulating these equations we are not only able to find the trajectory of a spinning particle in terms of its constants of motion, but also to provide a method to calculate the azimuthal and the radial frequency of this trajectory. Using these orbital quantities, we introduce the machinery to calculate through the frequency domain Teukolsky formalism the energy and the angular momentum fluxes at infinity, and at the horizon, along with the gravitational strain at infinity. We crosscheck the results obtained from the frequency domain approach with the results obtained from a time domain Teukolsky equation solver called Teukode.
Název v anglickém jazyce
Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and their asymptotic gravitational-wave fluxes
Popis výsledku anglicky
We use the frequency and time domain Teukolsky formalism to calculate gravitational-wave fluxes from a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning body is represented as a point particle following the pole-dipole approximation of the Mathisson-Papapetrou-Dixon equations. Reformulating these equations we are not only able to find the trajectory of a spinning particle in terms of its constants of motion, but also to provide a method to calculate the azimuthal and the radial frequency of this trajectory. Using these orbital quantities, we introduce the machinery to calculate through the frequency domain Teukolsky formalism the energy and the angular momentum fluxes at infinity, and at the horizon, along with the gravitational strain at infinity. We crosscheck the results obtained from the frequency domain approach with the results obtained from a time domain Teukolsky equation solver called Teukode.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
103
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
104045
Kód UT WoS článku
000655903100008
EID výsledku v databázi Scopus
2-s2.0-85106653446