Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00549683" target="_blank" >RIV/67985815:_____/21:00549683 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.104.024042" target="_blank" >https://doi.org/10.1103/PhysRevD.104.024042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.104.024042" target="_blank" >10.1103/PhysRevD.104.024042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits
Popis výsledku v původním jazyce
The Mathisson-Papapetrou-Dixon (MPD) equations describe the motion of an extended test body in general relativity. This system of equations, though, is underdetermined and has to be accompanied by constraining supplementary conditions, even in its simplest version, which is the pole-dipole approximation corresponding to a spinning test body. In particular, imposing a spin supplementary condition (SSC) fixes the center of mass of the spinning body, i.e., the centroid of the body.In the present study, we examine whether characteristic features of the centroid of a spinning test body, moving in a circular equatorial orbit around a massive black hole, are preserved under the transition to another centroid of the same physical body, governed by a different SSC. For this purpose, we establish an analytical algorithm for deriving the orbital frequency of a spinning body, moving in the background of an arbitrary, stationary, axisymmetric spacetime with reflection symmetry, for the Tulczyjew-Dixon, the Mathisson-Pirani, and the Ohashi-Kyrian-Semerak SSCs. Then, we focus on the Schwarzschild black hole background, and a power series expansion method is developed in order to investigate the discrepancies in the orbital frequencies expanded in power series of the spin among the different SSCs. Lastly, by employing the fact that the position of the centroid and the measure of the spin alters under the centroid's transition, we impose proper corrections to the power expansion of the orbital frequencies, which allows to improve the convergence between the SSCs. Our concluding argument is that when we shift from one circular equatorial orbit to another in the Schwarzschild background, under the change of a SSC, the convergence between the SSCs holds only up to certain powers in the spin expansion, and it cannot be achieved for the whole power series.
Název v anglickém jazyce
Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits
Popis výsledku anglicky
The Mathisson-Papapetrou-Dixon (MPD) equations describe the motion of an extended test body in general relativity. This system of equations, though, is underdetermined and has to be accompanied by constraining supplementary conditions, even in its simplest version, which is the pole-dipole approximation corresponding to a spinning test body. In particular, imposing a spin supplementary condition (SSC) fixes the center of mass of the spinning body, i.e., the centroid of the body.In the present study, we examine whether characteristic features of the centroid of a spinning test body, moving in a circular equatorial orbit around a massive black hole, are preserved under the transition to another centroid of the same physical body, governed by a different SSC. For this purpose, we establish an analytical algorithm for deriving the orbital frequency of a spinning body, moving in the background of an arbitrary, stationary, axisymmetric spacetime with reflection symmetry, for the Tulczyjew-Dixon, the Mathisson-Pirani, and the Ohashi-Kyrian-Semerak SSCs. Then, we focus on the Schwarzschild black hole background, and a power series expansion method is developed in order to investigate the discrepancies in the orbital frequencies expanded in power series of the spin among the different SSCs. Lastly, by employing the fact that the position of the centroid and the measure of the spin alters under the centroid's transition, we impose proper corrections to the power expansion of the orbital frequencies, which allows to improve the convergence between the SSCs. Our concluding argument is that when we shift from one circular equatorial orbit to another in the Schwarzschild background, under the change of a SSC, the convergence between the SSCs holds only up to certain powers in the spin expansion, and it cannot be achieved for the whole power series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
104
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
024042
Kód UT WoS článku
000674578400005
EID výsledku v databázi Scopus
2-s2.0-85110292218