First light observations of the solar wind in the outer corona with the Metis coronagraph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00552639" target="_blank" >RIV/67985815:_____/21:00552639 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/0004-6361/202140980" target="_blank" >https://doi.org/10.1051/0004-6361/202140980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202140980" target="_blank" >10.1051/0004-6361/202140980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First light observations of the solar wind in the outer corona with the Metis coronagraph
Popis výsledku v původním jazyce
In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-alpha corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I Lyman-alpha images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet H I Ly alpha (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about +/- 10 degrees wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 +/- 18 km s(-1) from 4 R-circle dot to 6 R-circle dot. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona.
Název v anglickém jazyce
First light observations of the solar wind in the outer corona with the Metis coronagraph
Popis výsledku anglicky
In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-alpha corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I Lyman-alpha images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet H I Ly alpha (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about +/- 10 degrees wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 +/- 18 km s(-1) from 4 R-circle dot to 6 R-circle dot. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
656
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
9
Strana od-do
A32
Kód UT WoS článku
000730246400007
EID výsledku v databázi Scopus
2-s2.0-85121575769