Characterization of magneto-convection in sunspots The Gough-Tayler stability criterion in MURaM sunspot simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00552640" target="_blank" >RIV/67985815:_____/21:00552640 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/0004-6361/202141607" target="_blank" >https://doi.org/10.1051/0004-6361/202141607</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202141607" target="_blank" >10.1051/0004-6361/202141607</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization of magneto-convection in sunspots The Gough-Tayler stability criterion in MURaM sunspot simulations
Popis výsledku v původním jazyce
We analyse a sunspot simulation in an effort to understand the origin of the convective instabilities giving rise to the penumbral and umbral distinct regimes. We applied the criterion from Gough & Tayler (1966, MNRAS, 133, 85), accounting for the stabilising effect of the vertical magnetic field, to investigate the convective instabilities in a MURaM sunspot simulation. We find: (1) a highly unstable shallow layer right beneath the surface extending all over the simulation box in which convection is triggered by radiative cooling in the photosphere, (2) a deep umbral core (beneath -5 Mm) stabilised against overturning convection that underlies a region with stable background values permeated by slender instabilities coupled to umbral dots, (3) filamentary instabilities below the penumbra nearly parallel to the surface and undulating instabilities coupled to the penumbra which originate in the deep layers. These deep-rooted instabilities result in the vigorous magneto-convection regime characteristic of the penumbra, (4) convective downdrafts in the granulation, penumbra, and umbra develop at about 2 km s(-1), 1 km s(-1), and 0.1 km s(-1), respectively, indicating that the granular regime of convection is more vigorous than the penumbra convection regime, which, in turn, is more vigorous than the close-to-steady umbra, (5) the GT criterion outlines both the sunspot magnetopause and peripatopause, highlighting the tripartite nature of the sub-photospheric layers of magnetohydrodynamic (MHD) sunspot models, and, finally, (6) the Jurcak criterion is the photospheric counterpart of the GT criterion in deep layers. The GT criterion as a diagnostic tool reveals the tripartite nature of sunspot structure with distinct regimes of magneto-convection in the umbra, penumbra, and granulation operating in realistic MHD simulations.
Název v anglickém jazyce
Characterization of magneto-convection in sunspots The Gough-Tayler stability criterion in MURaM sunspot simulations
Popis výsledku anglicky
We analyse a sunspot simulation in an effort to understand the origin of the convective instabilities giving rise to the penumbral and umbral distinct regimes. We applied the criterion from Gough & Tayler (1966, MNRAS, 133, 85), accounting for the stabilising effect of the vertical magnetic field, to investigate the convective instabilities in a MURaM sunspot simulation. We find: (1) a highly unstable shallow layer right beneath the surface extending all over the simulation box in which convection is triggered by radiative cooling in the photosphere, (2) a deep umbral core (beneath -5 Mm) stabilised against overturning convection that underlies a region with stable background values permeated by slender instabilities coupled to umbral dots, (3) filamentary instabilities below the penumbra nearly parallel to the surface and undulating instabilities coupled to the penumbra which originate in the deep layers. These deep-rooted instabilities result in the vigorous magneto-convection regime characteristic of the penumbra, (4) convective downdrafts in the granulation, penumbra, and umbra develop at about 2 km s(-1), 1 km s(-1), and 0.1 km s(-1), respectively, indicating that the granular regime of convection is more vigorous than the penumbra convection regime, which, in turn, is more vigorous than the close-to-steady umbra, (5) the GT criterion outlines both the sunspot magnetopause and peripatopause, highlighting the tripartite nature of the sub-photospheric layers of magnetohydrodynamic (MHD) sunspot models, and, finally, (6) the Jurcak criterion is the photospheric counterpart of the GT criterion in deep layers. The GT criterion as a diagnostic tool reveals the tripartite nature of sunspot structure with distinct regimes of magneto-convection in the umbra, penumbra, and granulation operating in realistic MHD simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
656
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
8
Strana od-do
A92
Kód UT WoS článku
000728156800005
EID výsledku v databázi Scopus
2-s2.0-85121218925