On the accuracy of H I observations in molecular clouds. More cold H I than thought?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00556787" target="_blank" >RIV/67985815:_____/22:00556787 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/mnras/stac607" target="_blank" >https://doi.org/10.1093/mnras/stac607</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stac607" target="_blank" >10.1093/mnras/stac607</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the accuracy of H I observations in molecular clouds. More cold H I than thought?
Popis výsledku v původním jazyce
We present a study of the cold atomic hydrogen (H I) content of molecular clouds simulated within the SILCC-Zoom project for solar neighbourhood conditions. We produce synthetic observations of H I at 21 cm, including H I self-absorption (HISA) and observational effects. We find that H I column densities, N-H I, of greater than or similar to 10(22) cm(-2) are frequently reached in molecular clouds with H I temperatures as low as similar to 10 K. Hence, HISA observations assuming a fixed H I temperature tend to underestimate the amount of cold H I in molecular clouds by a factor of 3-10 and produce an artificial upper limit of N-H I around 10(21) cm(-2). We thus argue that the cold H I mass in molecular clouds could be a factor of a few higher than previously estimated. Also, N-H I PDFs obtained from HISA observations might be subject to observational biases and should be considered with caution. The underestimation of cold H I in HISA observations is due to both the large H I temperature variations and the effect of noise in regions of high optical depth. We find optical depths of cold H I around 1-10, making optical depth corrections essential. We show that the high H I column densities (greater than or similar to 10(22) cm(-2)) can in parts be attributed to the occurrence of up to 10 individual HI-H-2 transitions along the line of sight. This is also reflected in the spectra, necessitating Gaussian decomposition algorithms for their in-depth analysis. However, also for a single HI-H-2 transition, N-H I frequently exceeds 10(21) cm(-2), challenging one-dimensional, semi-analytical models. This is due to non-equilibrium chemistry effects and the fact that HI-H-2 transition regions usually do not possess a one-dimensional geometry. Finally, we show that the H I gas is moderately supersonic with Mach numbers of a few. The corresponding non-thermal velocity dispersion can be determined via HISA observations within a factor of similar to 2.
Název v anglickém jazyce
On the accuracy of H I observations in molecular clouds. More cold H I than thought?
Popis výsledku anglicky
We present a study of the cold atomic hydrogen (H I) content of molecular clouds simulated within the SILCC-Zoom project for solar neighbourhood conditions. We produce synthetic observations of H I at 21 cm, including H I self-absorption (HISA) and observational effects. We find that H I column densities, N-H I, of greater than or similar to 10(22) cm(-2) are frequently reached in molecular clouds with H I temperatures as low as similar to 10 K. Hence, HISA observations assuming a fixed H I temperature tend to underestimate the amount of cold H I in molecular clouds by a factor of 3-10 and produce an artificial upper limit of N-H I around 10(21) cm(-2). We thus argue that the cold H I mass in molecular clouds could be a factor of a few higher than previously estimated. Also, N-H I PDFs obtained from HISA observations might be subject to observational biases and should be considered with caution. The underestimation of cold H I in HISA observations is due to both the large H I temperature variations and the effect of noise in regions of high optical depth. We find optical depths of cold H I around 1-10, making optical depth corrections essential. We show that the high H I column densities (greater than or similar to 10(22) cm(-2)) can in parts be attributed to the occurrence of up to 10 individual HI-H-2 transitions along the line of sight. This is also reflected in the spectra, necessitating Gaussian decomposition algorithms for their in-depth analysis. However, also for a single HI-H-2 transition, N-H I frequently exceeds 10(21) cm(-2), challenging one-dimensional, semi-analytical models. This is due to non-equilibrium chemistry effects and the fact that HI-H-2 transition regions usually do not possess a one-dimensional geometry. Finally, we show that the H I gas is moderately supersonic with Mach numbers of a few. The corresponding non-thermal velocity dispersion can be determined via HISA observations within a factor of similar to 2.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15008S" target="_blank" >GA19-15008S: Efektivita tvorby hvězd v hmotných hvězdokupách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
1365-2966
Svazek periodika
512
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
4765-4784
Kód UT WoS článku
000779888900004
EID výsledku v databázi Scopus
2-s2.0-85128744399