Anisotropic Electron Heating in Turbulence-driven Magnetic Reconnection in the Near-Sun Solar Wind
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00560726" target="_blank" >RIV/67985815:_____/22:00560726 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378289:_____/22:00568704
Výsledek na webu
<a href="https://hdl.handle.net/11104/0334236" target="_blank" >https://hdl.handle.net/11104/0334236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/ac7da6" target="_blank" >10.3847/1538-4357/ac7da6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anisotropic Electron Heating in Turbulence-driven Magnetic Reconnection in the Near-Sun Solar Wind
Popis výsledku v původním jazyce
We perform a high-resolution, 2D, fully kinetic numerical simulation of a turbulent plasma system with observation-driven conditions, in order to investigate the interplay between turbulence, magnetic reconnection, and particle heating from ion to subelectron scales in the near-Sun solar wind. We find that the power spectra of the turbulent plasma and electromagnetic fluctuations show multiple power-law intervals down to scales smaller than the electron gyroradius. Magnetic reconnection is observed to occur in correspondence of current sheets with a thickness of the order of the electron inertial length, which form and shrink owing to interacting ion-scale vortices. In some cases, both ion and electron outflows are observed (the classic reconnection scenario), while in others-typically for the shortest current sheets-only electron jets are present (“electron-only reconnection”). At the onset of reconnection, the electron temperature starts to increase and a strong parallel temperature anisotropy develops. This suggests that in strong turbulence electron-scale coherent structures may play a significant role for electron heating, as impulsive and localized phenomena such as magnetic reconnection can efficiently transfer energy from the electromagnetic fields to particles.
Název v anglickém jazyce
Anisotropic Electron Heating in Turbulence-driven Magnetic Reconnection in the Near-Sun Solar Wind
Popis výsledku anglicky
We perform a high-resolution, 2D, fully kinetic numerical simulation of a turbulent plasma system with observation-driven conditions, in order to investigate the interplay between turbulence, magnetic reconnection, and particle heating from ion to subelectron scales in the near-Sun solar wind. We find that the power spectra of the turbulent plasma and electromagnetic fluctuations show multiple power-law intervals down to scales smaller than the electron gyroradius. Magnetic reconnection is observed to occur in correspondence of current sheets with a thickness of the order of the electron inertial length, which form and shrink owing to interacting ion-scale vortices. In some cases, both ion and electron outflows are observed (the classic reconnection scenario), while in others-typically for the shortest current sheets-only electron jets are present (“electron-only reconnection”). At the onset of reconnection, the electron temperature starts to increase and a strong parallel temperature anisotropy develops. This suggests that in strong turbulence electron-scale coherent structures may play a significant role for electron heating, as impulsive and localized phenomena such as magnetic reconnection can efficiently transfer energy from the electromagnetic fields to particles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal
ISSN
0004-637X
e-ISSN
1538-4357
Svazek periodika
936
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
27
Kód UT WoS článku
000844842000001
EID výsledku v databázi Scopus
2-s2.0-85137719988