Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectroscopic redshift determination with Bayesian convolutional networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00562014" target="_blank" >RIV/67985815:_____/22:00562014 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/22:00358947

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ascom.2022.100615" target="_blank" >https://doi.org/10.1016/j.ascom.2022.100615</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ascom.2022.100615" target="_blank" >10.1016/j.ascom.2022.100615</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectroscopic redshift determination with Bayesian convolutional networks

  • Popis výsledku v původním jazyce

    Astronomy is facing large amounts of data, so astronomers have to rely on automated methods to analyse them. However, automated methods might produce incorrect values. Therefore, we need to develop different automated methods and perform a consistency check to identify them. If there is a lot of labelled data, convolutional neural networks are a powerful method for any task. We illustrate the consistency check on spectroscopic redshift determination with a method based on a Bayesian convolutional neural network inspired by VGG networks. The method provides predictive uncertainties that enable us to (1.) determine unusual or problematic spectra for visual inspection (2.) do thresholding that allows us to balance between the error of redshift predictions and coverage. We used the 12th Sloan Digital Sky Survey quasar superset as the training set for the method. We evaluated its generalisation capability on about three-quarters of a million spectra from the 16th quasar superset of the same survey. On the 16th quasar superset, the method performs better in terms of the root-mean-squared error than the most used template fitting method. Using redshift predictions of the proposed method, we identified spectra with incorrectly determined redshifts that are unrecognised quasars or were misclassified as them.

  • Název v anglickém jazyce

    Spectroscopic redshift determination with Bayesian convolutional networks

  • Popis výsledku anglicky

    Astronomy is facing large amounts of data, so astronomers have to rely on automated methods to analyse them. However, automated methods might produce incorrect values. Therefore, we need to develop different automated methods and perform a consistency check to identify them. If there is a lot of labelled data, convolutional neural networks are a powerful method for any task. We illustrate the consistency check on spectroscopic redshift determination with a method based on a Bayesian convolutional neural network inspired by VGG networks. The method provides predictive uncertainties that enable us to (1.) determine unusual or problematic spectra for visual inspection (2.) do thresholding that allows us to balance between the error of redshift predictions and coverage. We used the 12th Sloan Digital Sky Survey quasar superset as the training set for the method. We evaluated its generalisation capability on about three-quarters of a million spectra from the 16th quasar superset of the same survey. On the 16th quasar superset, the method performs better in terms of the root-mean-squared error than the most used template fitting method. Using redshift predictions of the proposed method, we identified spectra with incorrectly determined redshifts that are unrecognised quasars or were misclassified as them.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy and Computing

  • ISSN

    2213-1337

  • e-ISSN

    2213-1345

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    100615

  • Kód UT WoS článku

    000876694100002

  • EID výsledku v databázi Scopus

    2-s2.0-85134881627