Spectroscopic redshift determination with Bayesian convolutional networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00562014" target="_blank" >RIV/67985815:_____/22:00562014 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/22:00358947
Výsledek na webu
<a href="https://doi.org/10.1016/j.ascom.2022.100615" target="_blank" >https://doi.org/10.1016/j.ascom.2022.100615</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ascom.2022.100615" target="_blank" >10.1016/j.ascom.2022.100615</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectroscopic redshift determination with Bayesian convolutional networks
Popis výsledku v původním jazyce
Astronomy is facing large amounts of data, so astronomers have to rely on automated methods to analyse them. However, automated methods might produce incorrect values. Therefore, we need to develop different automated methods and perform a consistency check to identify them. If there is a lot of labelled data, convolutional neural networks are a powerful method for any task. We illustrate the consistency check on spectroscopic redshift determination with a method based on a Bayesian convolutional neural network inspired by VGG networks. The method provides predictive uncertainties that enable us to (1.) determine unusual or problematic spectra for visual inspection (2.) do thresholding that allows us to balance between the error of redshift predictions and coverage. We used the 12th Sloan Digital Sky Survey quasar superset as the training set for the method. We evaluated its generalisation capability on about three-quarters of a million spectra from the 16th quasar superset of the same survey. On the 16th quasar superset, the method performs better in terms of the root-mean-squared error than the most used template fitting method. Using redshift predictions of the proposed method, we identified spectra with incorrectly determined redshifts that are unrecognised quasars or were misclassified as them.
Název v anglickém jazyce
Spectroscopic redshift determination with Bayesian convolutional networks
Popis výsledku anglicky
Astronomy is facing large amounts of data, so astronomers have to rely on automated methods to analyse them. However, automated methods might produce incorrect values. Therefore, we need to develop different automated methods and perform a consistency check to identify them. If there is a lot of labelled data, convolutional neural networks are a powerful method for any task. We illustrate the consistency check on spectroscopic redshift determination with a method based on a Bayesian convolutional neural network inspired by VGG networks. The method provides predictive uncertainties that enable us to (1.) determine unusual or problematic spectra for visual inspection (2.) do thresholding that allows us to balance between the error of redshift predictions and coverage. We used the 12th Sloan Digital Sky Survey quasar superset as the training set for the method. We evaluated its generalisation capability on about three-quarters of a million spectra from the 16th quasar superset of the same survey. On the 16th quasar superset, the method performs better in terms of the root-mean-squared error than the most used template fitting method. Using redshift predictions of the proposed method, we identified spectra with incorrectly determined redshifts that are unrecognised quasars or were misclassified as them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy and Computing
ISSN
2213-1337
e-ISSN
2213-1345
Svazek periodika
40
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
100615
Kód UT WoS článku
000876694100002
EID výsledku v databázi Scopus
2-s2.0-85134881627