Comparing second-order gravitational self-force, numerical relativity, and effective one body waveforms from inspiralling, quasicircular, and nonspinning black hole binaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00564726" target="_blank" >RIV/67985815:_____/22:00564726 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10457108
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.106.084061" target="_blank" >https://doi.org/10.1103/PhysRevD.106.084061</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.106.084061" target="_blank" >10.1103/PhysRevD.106.084061</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing second-order gravitational self-force, numerical relativity, and effective one body waveforms from inspiralling, quasicircular, and nonspinning black hole binaries
Popis výsledku v původním jazyce
We present the first systematic comparison between gravitational waveforms emitted by inspiralling, quasicircular and nonspinning black hole binaries computed with three different approaches: second-order gravitational self-force (2GSF) theory, as implemented in the 1PAT1 model, numerical relativity (NR), as implemented by the SXS collaboration, and the effective one body (EOB) formalism, as implemented in the TEOBRESUMS waveform model. To compare the models we use both a standard, time-domain waveform alignment and a gauge-invariant analysis based on the dimensionless function Qw(w)w2/_w, where w is the gravitational wave frequency. We analyze the domain of validity of the 1PAT1 model, deriving error estimates and showing that the effects of the final transition to plunge, which the model neglects, extend over a significantly larger frequency interval than one might expect. Restricting to the inspiral regime, we find that, while for mass ratios q = m1/m2 <= 10 TEOBRESUMS is largely indistinguishable from NR, 1PAT1 has a significant dephasing N1 rad, conversely, for q N 100, 1PAT1 is estimated to have phase errors < 0.1 rad on a large frequency interval, while TEOBRESUMS develops phase differences N1 rad with it. Most crucially, on that same large frequency interval we find good agreement between TEOBRESUMS and 1PAT1 in the intermediate regime 15 < q < 64, with < 0.5 rad dephasing between them. A simple modification to the TEOBRESUMS flux further improves this agreement for q N 30, reducing the dephasing to approximate to 0.27 rad even at q = 128. While our analysis points to the need for more highly accurate, long-inspiral, NR simulations for q N 15 to precisely quantify the accuracy of EOB/2GSF waveforms, we can clearly identify the primary sources of error and routes to improvement of each model. In particular, our results pave the way for the construction of GSF-informed EOB models for both intermediate and extreme mass ratio inspirals for the next generation of gravitational wave detectors.
Název v anglickém jazyce
Comparing second-order gravitational self-force, numerical relativity, and effective one body waveforms from inspiralling, quasicircular, and nonspinning black hole binaries
Popis výsledku anglicky
We present the first systematic comparison between gravitational waveforms emitted by inspiralling, quasicircular and nonspinning black hole binaries computed with three different approaches: second-order gravitational self-force (2GSF) theory, as implemented in the 1PAT1 model, numerical relativity (NR), as implemented by the SXS collaboration, and the effective one body (EOB) formalism, as implemented in the TEOBRESUMS waveform model. To compare the models we use both a standard, time-domain waveform alignment and a gauge-invariant analysis based on the dimensionless function Qw(w)w2/_w, where w is the gravitational wave frequency. We analyze the domain of validity of the 1PAT1 model, deriving error estimates and showing that the effects of the final transition to plunge, which the model neglects, extend over a significantly larger frequency interval than one might expect. Restricting to the inspiral regime, we find that, while for mass ratios q = m1/m2 <= 10 TEOBRESUMS is largely indistinguishable from NR, 1PAT1 has a significant dephasing N1 rad, conversely, for q N 100, 1PAT1 is estimated to have phase errors < 0.1 rad on a large frequency interval, while TEOBRESUMS develops phase differences N1 rad with it. Most crucially, on that same large frequency interval we find good agreement between TEOBRESUMS and 1PAT1 in the intermediate regime 15 < q < 64, with < 0.5 rad dephasing between them. A simple modification to the TEOBRESUMS flux further improves this agreement for q N 30, reducing the dephasing to approximate to 0.27 rad even at q = 128. While our analysis points to the need for more highly accurate, long-inspiral, NR simulations for q N 15 to precisely quantify the accuracy of EOB/2GSF waveforms, we can clearly identify the primary sources of error and routes to improvement of each model. In particular, our results pave the way for the construction of GSF-informed EOB models for both intermediate and extreme mass ratio inspirals for the next generation of gravitational wave detectors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
106
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
084061
Kód UT WoS článku
000880793000014
EID výsledku v databázi Scopus
2-s2.0-85141564188