Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tree-based solvers for adaptive mesh refinement code FLASH III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00571485" target="_blank" >RIV/67985815:_____/23:00571485 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/mnras/stad385" target="_blank" >https://doi.org/10.1093/mnras/stad385</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stad385" target="_blank" >10.1093/mnras/stad385</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tree-based solvers for adaptive mesh refinement code FLASH III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources

  • Popis výsledku v původním jazyce

    Radiation is an important contributor to the energetics of the interstellar medium, yet its transport is difficult to solve numerically. We present a novel approach towards solving radiative transfer of diffuse sources via backwards ray tracing. Here, we focus on the radiative transfer of infrared radiation and the radiation pressure on dust. The new module, TreeRay/RadPressure, is an extension to the novel radiative transfer method TreeRay implemented in the grid-based Magneto-Hydrodynamics code Flash. In TreeRay/RadPressure, every cell and every star particle is a source of infrared radiation. We also describe how gas, dust, and radiation are coupled via a chemical network. This allows us to compute the local dust temperature in thermal equilibrium, leading to a significantly improvement over the classical grey approximation. In several tests, we demonstrate that the scheme produces the correct radiative intensities as well as the correct momentum input by radiation pressure. Subsequently, we apply our new scheme to model massive star formation from a collapsing, turbulent core of 150 M-?. We include the effects of both, ionizing and infrared radiation on the dynamics of the core. We find that the newborn massive star prevents fragmentation in its proximity due to radiative heating. Over time, dust and radiation temperature equalize, while the gas temperature can be either warmer due to shock heating or colder due to insufficient dust-gas coupling. Compared to gravity, the effects of radiation pressure are insignificant for the stellar mass on the simulated time-scale in this work.

  • Název v anglickém jazyce

    Tree-based solvers for adaptive mesh refinement code FLASH III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources

  • Popis výsledku anglicky

    Radiation is an important contributor to the energetics of the interstellar medium, yet its transport is difficult to solve numerically. We present a novel approach towards solving radiative transfer of diffuse sources via backwards ray tracing. Here, we focus on the radiative transfer of infrared radiation and the radiation pressure on dust. The new module, TreeRay/RadPressure, is an extension to the novel radiative transfer method TreeRay implemented in the grid-based Magneto-Hydrodynamics code Flash. In TreeRay/RadPressure, every cell and every star particle is a source of infrared radiation. We also describe how gas, dust, and radiation are coupled via a chemical network. This allows us to compute the local dust temperature in thermal equilibrium, leading to a significantly improvement over the classical grey approximation. In several tests, we demonstrate that the scheme produces the correct radiative intensities as well as the correct momentum input by radiation pressure. Subsequently, we apply our new scheme to model massive star formation from a collapsing, turbulent core of 150 M-?. We include the effects of both, ionizing and infrared radiation on the dynamics of the core. We find that the newborn massive star prevents fragmentation in its proximity due to radiative heating. Over time, dust and radiation temperature equalize, while the gas temperature can be either warmer due to shock heating or colder due to insufficient dust-gas coupling. Compared to gravity, the effects of radiation pressure are insignificant for the stellar mass on the simulated time-scale in this work.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15008S" target="_blank" >GA19-15008S: Efektivita tvorby hvězd v hmotných hvězdokupách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

    1365-2966

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    160-184

  • Kód UT WoS článku

    000951204600002

  • EID výsledku v databázi Scopus

    2-s2.0-85160587738