Capacitance of a conducting hollow cylindrical shell in a closed form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00582166" target="_blank" >RIV/67985815:_____/23:00582166 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.elstat.2023.103866" target="_blank" >https://doi.org/10.1016/j.elstat.2023.103866</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.elstat.2023.103866" target="_blank" >10.1016/j.elstat.2023.103866</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Capacitance of a conducting hollow cylindrical shell in a closed form
Popis výsledku v původním jazyce
The charge distribution within a hollow conducting cylinder with zero-thickness walls is calculated from the minimum potential energy (U) consideration. The surface charge density consists of a diverging term (Jackson, 1975) and a sum of Legendre polynomials with the coefficients determined from the minimum U approach. The sum converges. This allows to express the capacitance in closed form. It is in agreement with Butler (1980). We present electric field lines inside and outside of the cylinder. An electric field pattern can be studied in detail. Most of the numerical analysis is done for the conducting cylinder of the length equal to ten radii. The surface charge density near the edges diverges, and in the middle, it is twenty five percent less than that of a uniformly distributed charge. The self-energy of the conducting cylinder is about 5 percent lower than that of uniformly distributed surface charge. The results can be applied to antennas of artificial satellites and space probes.
Název v anglickém jazyce
Capacitance of a conducting hollow cylindrical shell in a closed form
Popis výsledku anglicky
The charge distribution within a hollow conducting cylinder with zero-thickness walls is calculated from the minimum potential energy (U) consideration. The surface charge density consists of a diverging term (Jackson, 1975) and a sum of Legendre polynomials with the coefficients determined from the minimum U approach. The sum converges. This allows to express the capacitance in closed form. It is in agreement with Butler (1980). We present electric field lines inside and outside of the cylinder. An electric field pattern can be studied in detail. Most of the numerical analysis is done for the conducting cylinder of the length equal to ten radii. The surface charge density near the edges diverges, and in the middle, it is twenty five percent less than that of a uniformly distributed charge. The self-energy of the conducting cylinder is about 5 percent lower than that of uniformly distributed surface charge. The results can be applied to antennas of artificial satellites and space probes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Electrostatics
ISSN
0304-3886
e-ISSN
1873-5738
Svazek periodika
126
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
103866
Kód UT WoS článku
001115072300001
EID výsledku v databázi Scopus
2-s2.0-85175695852