Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00582498" target="_blank" >RIV/67985815:_____/23:00582498 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1103/PhysRevD.108.124018" target="_blank" >https://doi.org/10.1103/PhysRevD.108.124018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.108.124018" target="_blank" >10.1103/PhysRevD.108.124018</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations

  • Popis výsledku v původním jazyce

    The success of analytic waveform modeling within the effective-one-body (EOB) approach relies on the precise understanding of the physical importance of each technical element included in the model. The urgency of constructing progressively more sophisticated and complete waveform models (e.g. including spin precession and eccentricity) partly defocused the research from a careful comprehension of each building block (e.g. Hamiltonian, radiation reaction, ringdown attachment). Here we go back to the spirit of the first EOB works. We focus first on nonspinning, quasicircular, black hole binaries and analyze systematically the mutual synergy between numerical relativity (NR) informed functions and the high post-Newtonian corrections (up to 5PN) to the EOB potentials. Our main finding is that it is essential to correctly control the noncircular part of the dynamics during the late plunge up to merger. When this happens, either using NR-informed nonquasicircular corrections to the waveform (and flux) or high-PN corrections in the radial EOB potentials (D ,Q ), it is easy to obtain EOB /NR unfaithfulness ∼10-4 with the noise of either Advanced LIGO or 3G detectors. We then improve the TEOBResumS-GIOTTO waveform model (dubbed TEOBResumSv4.3.2) for quasicircular, spin-aligned black hole binaries. We obtain maximal EOB /NR unfaithfulness F¯EOBNRmax∼10-3 (with Advanced LIGO noise and in the total mass range 10 -200 M⊙) for the dominant ℓ=m =2 mode all over the 534 spin-aligned configurations available through the Simulating eXtreme Spacetime catalog. The model performance, also including higher modes, is then explored using the NR surrogates NRHybSur3dq8 and NRHybSur2dq15, to validate TEOBResumSv4.3.2 up to mass ratio m1/m2=15 . We find that, over the set of configurations considered, more than 98% of the total-mass-maximized unfaithfulness lie below the 3% threshold when comparing to the surrogate models.

  • Název v anglickém jazyce

    Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations

  • Popis výsledku anglicky

    The success of analytic waveform modeling within the effective-one-body (EOB) approach relies on the precise understanding of the physical importance of each technical element included in the model. The urgency of constructing progressively more sophisticated and complete waveform models (e.g. including spin precession and eccentricity) partly defocused the research from a careful comprehension of each building block (e.g. Hamiltonian, radiation reaction, ringdown attachment). Here we go back to the spirit of the first EOB works. We focus first on nonspinning, quasicircular, black hole binaries and analyze systematically the mutual synergy between numerical relativity (NR) informed functions and the high post-Newtonian corrections (up to 5PN) to the EOB potentials. Our main finding is that it is essential to correctly control the noncircular part of the dynamics during the late plunge up to merger. When this happens, either using NR-informed nonquasicircular corrections to the waveform (and flux) or high-PN corrections in the radial EOB potentials (D ,Q ), it is easy to obtain EOB /NR unfaithfulness ∼10-4 with the noise of either Advanced LIGO or 3G detectors. We then improve the TEOBResumS-GIOTTO waveform model (dubbed TEOBResumSv4.3.2) for quasicircular, spin-aligned black hole binaries. We obtain maximal EOB /NR unfaithfulness F¯EOBNRmax∼10-3 (with Advanced LIGO noise and in the total mass range 10 -200 M⊙) for the dominant ℓ=m =2 mode all over the 534 spin-aligned configurations available through the Simulating eXtreme Spacetime catalog. The model performance, also including higher modes, is then explored using the NR surrogates NRHybSur3dq8 and NRHybSur2dq15, to validate TEOBResumSv4.3.2 up to mass ratio m1/m2=15 . We find that, over the set of configurations considered, more than 98% of the total-mass-maximized unfaithfulness lie below the 3% threshold when comparing to the surrogate models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Svazek periodika

    108

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    124018

  • Kód UT WoS článku

    001134654100004

  • EID výsledku v databázi Scopus

    2-s2.0-85179793045