Deep-learning classification of eclipsing binaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00585883" target="_blank" >RIV/67985815:_____/24:00585883 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0353524" target="_blank" >https://hdl.handle.net/11104/0353524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31577/caosp.2024.54.2.167" target="_blank" >10.31577/caosp.2024.54.2.167</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-learning classification of eclipsing binaries
Popis výsledku v původním jazyce
We present a deep-learning model for the classification of eclipsing binaries. Our classifier provides a tool for the categorization of light curves of eclipsing binaries into four classes: detached systems with and without spots, and over-contact systems with and without spots. The classifier was trained on 200 000 synthetic light curves created using ELISa code. We randomly selected 100 light curves from the GAIA catalogue, which were fitted for evaluation purposes, and their morphologies were determined. We tested several classifiers and found that the best-performing classifier combined a Long Short-Term Memory (LSTM) layer and two one-dimensional convolutional neural networks. The precision from the evaluation set was 97% compared with the predicted precision of 94% for the validation of synthetic data. Our classifier is more likely to successfully process data from subsequent large observational surveys.n
Název v anglickém jazyce
Deep-learning classification of eclipsing binaries
Popis výsledku anglicky
We present a deep-learning model for the classification of eclipsing binaries. Our classifier provides a tool for the categorization of light curves of eclipsing binaries into four classes: detached systems with and without spots, and over-contact systems with and without spots. The classifier was trained on 200 000 synthetic light curves created using ELISa code. We randomly selected 100 light curves from the GAIA catalogue, which were fitted for evaluation purposes, and their morphologies were determined. We tested several classifiers and found that the best-performing classifier combined a Long Short-Term Memory (LSTM) layer and two one-dimensional convolutional neural networks. The precision from the evaluation set was 97% compared with the predicted precision of 94% for the validation of synthetic data. Our classifier is more likely to successfully process data from subsequent large observational surveys.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Contributions of the Astronomical Observatory Skalnaté Pleso
ISSN
1335-1842
e-ISSN
1336-0337
Svazek periodika
54
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
4
Strana od-do
167-170
Kód UT WoS článku
001178776600019
EID výsledku v databázi Scopus
2-s2.0-85193014109