Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High-precision spectral inversions: Determining what is important for the accurate definition of incident radiation boundary conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00587974" target="_blank" >RIV/67985815:_____/24:00587974 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0355046" target="_blank" >https://hdl.handle.net/11104/0355046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202449551" target="_blank" >10.1051/0004-6361/202449551</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High-precision spectral inversions: Determining what is important for the accurate definition of incident radiation boundary conditions

  • Popis výsledku v původním jazyce

    Spectral inversions are used to analyse spectroscopic observations with the aim of deriving the physical properties of the observed plasma, such as the kinetic temperature, density, pressure, degree of ionisation, or macroscopic velocities. One of the key factors ensuring the high precision of the derived plasma properties is having accurately defined input parameters of the models on which spectral inversions rely. The illumination, which chromospheric and coronal structures receive from the solar surface (and corona), is one of the most crucial input parameters of these models. Aims. We do not perform spectral inversions in this work. Our aim is to study two important factors that contribute to the accurate definition of the incident radiation boundary conditions: the altitude above the solar surface and the dynamics of the illuminated plasma. This investigation takes into account a diverse range of solar structures from the high-rising eruptive prominences to low-lying spicules. Methods. To study the influence of the altitude and dynamics of the observed plasma on the incident radiation boundary conditions, we used geometrical principles valid for any spectral line. However, to demonstrate the strong impact of dynamics, we considered the specific case of narrow spectral lines of Mg II H&K, which are highly sensitive to the presence of velocities. Results. We argue that the altitude of the illuminated plasma strongly influences the way we need to define the incident radiation boundary conditions to achieve the most accurate results. For low-lying structures, generally below 50 000 km, the incident radiation may need to be specified directly from the composition of the portion of the solar disc that illuminates them. For high-altitude structures, generally above 300 000 km, the fraction of the solar disc illuminating the analysed plasma is large enough to be realistically approximated by the composition of the entire disc. We also show that for the narrow spectral lines, such as the Mg II H&K lines, the impact of dynamics on the incident radiation intensity and profile shapes starts from radial velocities of 30 km s(-1). Such velocities are even exhibited by the fine structures of quiescent prominences and are easily exceeded in spicules or eruptive prominences.

  • Název v anglickém jazyce

    High-precision spectral inversions: Determining what is important for the accurate definition of incident radiation boundary conditions

  • Popis výsledku anglicky

    Spectral inversions are used to analyse spectroscopic observations with the aim of deriving the physical properties of the observed plasma, such as the kinetic temperature, density, pressure, degree of ionisation, or macroscopic velocities. One of the key factors ensuring the high precision of the derived plasma properties is having accurately defined input parameters of the models on which spectral inversions rely. The illumination, which chromospheric and coronal structures receive from the solar surface (and corona), is one of the most crucial input parameters of these models. Aims. We do not perform spectral inversions in this work. Our aim is to study two important factors that contribute to the accurate definition of the incident radiation boundary conditions: the altitude above the solar surface and the dynamics of the illuminated plasma. This investigation takes into account a diverse range of solar structures from the high-rising eruptive prominences to low-lying spicules. Methods. To study the influence of the altitude and dynamics of the observed plasma on the incident radiation boundary conditions, we used geometrical principles valid for any spectral line. However, to demonstrate the strong impact of dynamics, we considered the specific case of narrow spectral lines of Mg II H&K, which are highly sensitive to the presence of velocities. Results. We argue that the altitude of the illuminated plasma strongly influences the way we need to define the incident radiation boundary conditions to achieve the most accurate results. For low-lying structures, generally below 50 000 km, the incident radiation may need to be specified directly from the composition of the portion of the solar disc that illuminates them. For high-altitude structures, generally above 300 000 km, the fraction of the solar disc illuminating the analysed plasma is large enough to be realistically approximated by the composition of the entire disc. We also show that for the narrow spectral lines, such as the Mg II H&K lines, the impact of dynamics on the incident radiation intensity and profile shapes starts from radial velocities of 30 km s(-1). Such velocities are even exhibited by the fine structures of quiescent prominences and are easily exceeded in spicules or eruptive prominences.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-34841S" target="_blank" >GA22-34841S: Výzkum eruptivních procesů se sondou Solar Orbiter</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Svazek periodika

    687

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    9

  • Strana od-do

    A231

  • Kód UT WoS článku

    001269460100013

  • EID výsledku v databázi Scopus

    2-s2.0-85198949235