X-ray reverberation as an explanation for UV/optical variability in nearby Seyferts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00601311" target="_blank" >RIV/67985815:_____/24:00601311 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0358566" target="_blank" >https://hdl.handle.net/11104/0358566</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202348603" target="_blank" >10.1051/0004-6361/202348603</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
X-ray reverberation as an explanation for UV/optical variability in nearby Seyferts
Popis výsledku v původním jazyce
Context. Active galactic nuclei (AGNs) are known to be variable across all wavelengths. Significant observational efforts have been invested in the last decade in studying their ultraviolet (UV) and optical variability. Long and densely sampled, multi-wavelength monitoring campaigns of numerous Seyfert galaxies have been conducted with the aim of determining the X-ray/UV/optical continuum time lags. Time-lag studies can be used to constrain theoretical models. The observed time lags can be explained by thermal reprocessing of the X-rays illuminating the accretion disc (known as the X-ray reverberation model). However, the observed light curves contain more information that can be used to further constrain physical models. Aims. Our primary objective is to investigate whether, in addition to time lags, the X-ray reverberation model can also explain the UV/optical variability amplitude of nearby Seyferts. Methods. We measured the excess variance of four sources (namely Mrk 509, NGC 4151, NGC 2617, and Mrk 142) as a function of wavelength using data from archival long, multi-wavelength campaigns with Swift, and ground-based telescopes. We also computed the model excess variance in the case of the X-ray reverberation model by determining the disc's transfer function and assuming a bending power law for the X-ray power spectrum. We tested the validity of the model by comparing the measured and model variances for a range of accretion rates and X-ray source heights. Results. Our main result is that the X-ray thermal reverberation model can fit both the continuum, UV/optical time lags, as well as the variance (i.e. the variability amplitude) in these AGNs, for the same physical parameters. Our results suggest that the accretion disc is constant and that all the observed UV/optical variations, on timescales of days and up to a few weeks, can be fully explained by the variable X-rays as they illuminate the accretion disc.
Název v anglickém jazyce
X-ray reverberation as an explanation for UV/optical variability in nearby Seyferts
Popis výsledku anglicky
Context. Active galactic nuclei (AGNs) are known to be variable across all wavelengths. Significant observational efforts have been invested in the last decade in studying their ultraviolet (UV) and optical variability. Long and densely sampled, multi-wavelength monitoring campaigns of numerous Seyfert galaxies have been conducted with the aim of determining the X-ray/UV/optical continuum time lags. Time-lag studies can be used to constrain theoretical models. The observed time lags can be explained by thermal reprocessing of the X-rays illuminating the accretion disc (known as the X-ray reverberation model). However, the observed light curves contain more information that can be used to further constrain physical models. Aims. Our primary objective is to investigate whether, in addition to time lags, the X-ray reverberation model can also explain the UV/optical variability amplitude of nearby Seyferts. Methods. We measured the excess variance of four sources (namely Mrk 509, NGC 4151, NGC 2617, and Mrk 142) as a function of wavelength using data from archival long, multi-wavelength campaigns with Swift, and ground-based telescopes. We also computed the model excess variance in the case of the X-ray reverberation model by determining the disc's transfer function and assuming a bending power law for the X-ray power spectrum. We tested the validity of the model by comparing the measured and model variances for a range of accretion rates and X-ray source heights. Results. Our main result is that the X-ray thermal reverberation model can fit both the continuum, UV/optical time lags, as well as the variance (i.e. the variability amplitude) in these AGNs, for the same physical parameters. Our results suggest that the accretion disc is constant and that all the observed UV/optical variations, on timescales of days and up to a few weeks, can be fully explained by the variable X-rays as they illuminate the accretion disc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
691
Číslo periodika v rámci svazku
Oct.
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
16
Strana od-do
A60
Kód UT WoS článku
001345759900010
EID výsledku v databázi Scopus
2-s2.0-85208285096