Multiwavelength campaign observations of a young solar-type star, EK Draconis. II. understanding prominence eruption through data-driven modeling and observed magnetic environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00602568" target="_blank" >RIV/67985815:_____/24:00602568 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0359836" target="_blank" >https://hdl.handle.net/11104/0359836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/ad85df" target="_blank" >10.3847/1538-4357/ad85df</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiwavelength campaign observations of a young solar-type star, EK Draconis. II. understanding prominence eruption through data-driven modeling and observed magnetic environment
Popis výsledku v původním jazyce
EK Draconis, a nearby young solar-type star (G1.5V, 50-120 Myr), is known as one of the best proxies for inferring the environmental conditions of the young Sun. The star frequently produces superflares, and Paper I presented the first evidence of an associated gigantic prominence eruption observed as a blueshifted H alpha Balmer line emission. In this paper, we present the results of the dynamical modeling of the stellar eruption and examine its relationship to the surface starspots and large-scale magnetic fields observed concurrently with the event. By performing a 1D freefall dynamical model and a 1D hydrodynamic simulation of the flow along the expanding magnetic loop, we found that the prominence eruption likely occurred near the stellar limb (125+5167+7 degrees from the limb) and was ejected at an angle of 15-5+6246+6 degrees relative to the line of sight, and the magnetic structures can expand into a coronal mass ejection. The observed prominence displayed a terminal velocity of similar to 0 km s-1 prior to disappearance, complicating the interpretation of its dynamics in Paper I. The models in this paper suggest that prominence's H alpha intensity diminishes at around or before its expected maximum height, explaining the puzzling time evolution in observations. The Transiting Exoplanet Survey Satellite light curve modeling and (Zeeman) Doppler Imaging revealed large midlatitude spots with polarity inversion lines and one polar spot with dominant single polarity, all near the stellar limb during the eruption. This suggests that midlatitude spots could be the source of the gigantic prominence we reported in Paper I. These results provide valuable insights into the dynamic processes that likely influenced the environments of early Earth, Mars, Venus, and young exoplanets.
Název v anglickém jazyce
Multiwavelength campaign observations of a young solar-type star, EK Draconis. II. understanding prominence eruption through data-driven modeling and observed magnetic environment
Popis výsledku anglicky
EK Draconis, a nearby young solar-type star (G1.5V, 50-120 Myr), is known as one of the best proxies for inferring the environmental conditions of the young Sun. The star frequently produces superflares, and Paper I presented the first evidence of an associated gigantic prominence eruption observed as a blueshifted H alpha Balmer line emission. In this paper, we present the results of the dynamical modeling of the stellar eruption and examine its relationship to the surface starspots and large-scale magnetic fields observed concurrently with the event. By performing a 1D freefall dynamical model and a 1D hydrodynamic simulation of the flow along the expanding magnetic loop, we found that the prominence eruption likely occurred near the stellar limb (125+5167+7 degrees from the limb) and was ejected at an angle of 15-5+6246+6 degrees relative to the line of sight, and the magnetic structures can expand into a coronal mass ejection. The observed prominence displayed a terminal velocity of similar to 0 km s-1 prior to disappearance, complicating the interpretation of its dynamics in Paper I. The models in this paper suggest that prominence's H alpha intensity diminishes at around or before its expected maximum height, explaining the puzzling time evolution in observations. The Transiting Exoplanet Survey Satellite light curve modeling and (Zeeman) Doppler Imaging revealed large midlatitude spots with polarity inversion lines and one polar spot with dominant single polarity, all near the stellar limb during the eruption. This suggests that midlatitude spots could be the source of the gigantic prominence we reported in Paper I. These results provide valuable insights into the dynamic processes that likely influenced the environments of early Earth, Mars, Venus, and young exoplanets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-34841S" target="_blank" >GA22-34841S: Výzkum eruptivních procesů se sondou Solar Orbiter</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal
ISSN
0004-637X
e-ISSN
1538-4357
Svazek periodika
976
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
255
Kód UT WoS článku
001364845800001
EID výsledku v databázi Scopus
2-s2.0-85213378053