Turbulent plasma flow, its energies, and structures: Velocity vortices, magnetic field cocoons, and plasmoids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00603126" target="_blank" >RIV/67985815:_____/24:00603126 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/24:43908398
Výsledek na webu
<a href="https://hdl.handle.net/11104/0361051" target="_blank" >https://hdl.handle.net/11104/0361051</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202449558" target="_blank" >10.1051/0004-6361/202449558</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turbulent plasma flow, its energies, and structures: Velocity vortices, magnetic field cocoons, and plasmoids
Popis výsledku v původním jazyce
Context. Turbulent flows are believed to be present in the solar corona, especially in connection with solar flares and coronal mass ejections. They are supposed to be very effective processes in energy transportation and can contribute to the heating of the solar corona. Aims. We study turbulence in reconnection outflows associated with flares and coronal mass ejections. We simulated the generation and evolution of the turbulent plasma flow and investigated its energies and formed plasma velocity and magnetic field structures. Methods. For the numerical simulations, we adopted a three-dimensional (3D) magnetohydrodynamic (MHD) model, in which we solved a full set of the 3D time-dependent resistive and compressible MHD equations using the LARE3D numerical code. Results. We numerically studied turbulence in the plasma flow in the model with the plasma parameters that could simulate processes in the magnetic reconnection outflows in solar flares. Starting from a non-turbulent plasma flow in the energetically closed system, we studied the evolution of the kinetic, internal, and magnetic energies during the turbulence generation. We found that most of the kinetic energy is transformed into the plasma heating (about 95%) and only a small part to the magnetic energy (about 5%). The turbulence in the system evolves to the saturation stage with the power-law index of the kinetic density spectrum,5/3. Magnetic energy is also saturated due to its dissipation and reconnection in small and complex magnetic field structures. We show examples of the structures formed in studied turbulent flow: velocity vortices, magnetic field cocoons, and plasmoids.
Název v anglickém jazyce
Turbulent plasma flow, its energies, and structures: Velocity vortices, magnetic field cocoons, and plasmoids
Popis výsledku anglicky
Context. Turbulent flows are believed to be present in the solar corona, especially in connection with solar flares and coronal mass ejections. They are supposed to be very effective processes in energy transportation and can contribute to the heating of the solar corona. Aims. We study turbulence in reconnection outflows associated with flares and coronal mass ejections. We simulated the generation and evolution of the turbulent plasma flow and investigated its energies and formed plasma velocity and magnetic field structures. Methods. For the numerical simulations, we adopted a three-dimensional (3D) magnetohydrodynamic (MHD) model, in which we solved a full set of the 3D time-dependent resistive and compressible MHD equations using the LARE3D numerical code. Results. We numerically studied turbulence in the plasma flow in the model with the plasma parameters that could simulate processes in the magnetic reconnection outflows in solar flares. Starting from a non-turbulent plasma flow in the energetically closed system, we studied the evolution of the kinetic, internal, and magnetic energies during the turbulence generation. We found that most of the kinetic energy is transformed into the plasma heating (about 95%) and only a small part to the magnetic energy (about 5%). The turbulence in the system evolves to the saturation stage with the power-law index of the kinetic density spectrum,5/3. Magnetic energy is also saturated due to its dissipation and reconnection in small and complex magnetic field structures. We show examples of the structures formed in studied turbulent flow: velocity vortices, magnetic field cocoons, and plasmoids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
692
Číslo periodika v rámci svazku
Dec.
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
8
Strana od-do
A116
Kód UT WoS článku
001371705200001
EID výsledku v databázi Scopus
2-s2.0-85211598315