Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications Characterization and preliminary evaluation of mesenchymal stem cell response in vitro
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F22%3A00558807" target="_blank" >RIV/67985823:_____/22:00558807 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.bioadv.2022.212724" target="_blank" >https://doi.org/10.1016/j.bioadv.2022.212724</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bioadv.2022.212724" target="_blank" >10.1016/j.bioadv.2022.212724</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications Characterization and preliminary evaluation of mesenchymal stem cell response in vitro
Popis výsledku v původním jazyce
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlanbased scaffold was designed for osteochondral tissue engineering applications. To achieve biomimetic properties, it was enriched with a protein component ??? whey protein isolate as well as a ceramic ingredient ??? hydroxyapatite granules. The scaffold was fabricated via a simple and cost-efficient method, which represents a significant advantage. Importantly, this technique allowed generation of a scaffold with two distinct, but integrated phases. Scanning electron microcopy and optical profilometry observations demonstrated that phases of biomaterial possessed different structural properties. The top layer of the biomaterial (mimicking the cartilage) was smoother than the bottom one (mimicking the subchondral bone), which is beneficial from a biological point of view because unlike bone, cartilage is a smooth tissue. Moreover, mechanical testing showed that the top layer of the biomaterial had mechanical properties close to those of natural cartilage. Although the mechanical properties of the bottom layer of scaffold were lower than those of the subchondral bone, it was still higher than in many analogous systems. Most importantly, cell culture experiments indicated that the biomaterial possessed high cytocompatibility towards adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells in vitro. Both phases of the scaffold enhanced cell adhesion, proliferation, and chondrogenic differentiation of stem cells (revealing its chondroinductive properties in vitro) as well as osteogenic differentiation of these cells (revealing its osteoinductive properties in vitro). Given all features of the novel curdlan-based scaffold, it is worth noting that it may be considered as promising candidate for osteochondral tissue engineering applications.
Název v anglickém jazyce
Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications Characterization and preliminary evaluation of mesenchymal stem cell response in vitro
Popis výsledku anglicky
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlanbased scaffold was designed for osteochondral tissue engineering applications. To achieve biomimetic properties, it was enriched with a protein component ??? whey protein isolate as well as a ceramic ingredient ??? hydroxyapatite granules. The scaffold was fabricated via a simple and cost-efficient method, which represents a significant advantage. Importantly, this technique allowed generation of a scaffold with two distinct, but integrated phases. Scanning electron microcopy and optical profilometry observations demonstrated that phases of biomaterial possessed different structural properties. The top layer of the biomaterial (mimicking the cartilage) was smoother than the bottom one (mimicking the subchondral bone), which is beneficial from a biological point of view because unlike bone, cartilage is a smooth tissue. Moreover, mechanical testing showed that the top layer of the biomaterial had mechanical properties close to those of natural cartilage. Although the mechanical properties of the bottom layer of scaffold were lower than those of the subchondral bone, it was still higher than in many analogous systems. Most importantly, cell culture experiments indicated that the biomaterial possessed high cytocompatibility towards adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells in vitro. Both phases of the scaffold enhanced cell adhesion, proliferation, and chondrogenic differentiation of stem cells (revealing its chondroinductive properties in vitro) as well as osteogenic differentiation of these cells (revealing its osteoinductive properties in vitro). Given all features of the novel curdlan-based scaffold, it is worth noting that it may be considered as promising candidate for osteochondral tissue engineering applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomaterials Advances
ISSN
2772-9508
e-ISSN
2772-9508
Svazek periodika
135
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
212724
Kód UT WoS článku
000812231700001
EID výsledku v databázi Scopus
2-s2.0-85131954631