Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase-biotite-muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F17%3A00475323" target="_blank" >RIV/67985831:_____/17:00475323 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tecto.2017.05.005" target="_blank" >http://dx.doi.org/10.1016/j.tecto.2017.05.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tecto.2017.05.005" target="_blank" >10.1016/j.tecto.2017.05.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase-biotite-muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling)
Popis výsledku v původním jazyce
In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.
Název v anglickém jazyce
Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase-biotite-muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling)
Popis výsledku anglicky
In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/LH13102" target="_blank" >LH13102: Kinematická a dynamická anisotropie sedimentárních a krystalických hornin: Ultrazvukové, synchrotronní a měření neutronové difrakce</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Tectonophysics
ISSN
0040-1951
e-ISSN
—
Svazek periodika
712/713
Číslo periodika v rámci svazku
21 August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
82-94
Kód UT WoS článku
000409284500007
EID výsledku v databázi Scopus
2-s2.0-85019626250