Fossilized Melts in Mantle Wedge Peridotites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F18%3A00491911" target="_blank" >RIV/67985831:_____/18:00491911 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1038/s41598-018-28264-6" target="_blank" >http://dx.doi.org/10.1038/s41598-018-28264-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-018-28264-6" target="_blank" >10.1038/s41598-018-28264-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fossilized Melts in Mantle Wedge Peridotites
Popis výsledku v původním jazyce
The shallow oxidized asthenosphere may contain a small fraction of potassic silicate melts that are enriched in incompatible trace elements and volatiles. Here, to determine the chemical composition of such melt, we analysed fossilized melt inclusions, preserved as multiphase solid inclusions, from an orogenic garnet peridotite in the Bohemian Massif. Garnet-poor (2 vol.%) peridotite preserves inclusions of carbonated potassic silicate melt within Zn-poor chromite (<400 ppm) in the clinopyroxene-free harzburgite assemblage that equilibrated within the hot mantle wedge (Stage 1, >1180 degrees C at 3 GPa). The carbonated potassic silicate melt, which has a major element oxide chemical composition of K2O = 5.2 wt.%, CaO = 17 wt.%, MgO = 18 wt.%, CO2 = 22 wt.%, and SiO2 = 20 wt.%, contains extremely high concentrations of large ion lithophile elements, similar to kimberlite melts. Peridotites cooled down to. 800 degrees C during Stage 2, resulted in the growth of garnet relatively poor in pyrope content, molar Mg/(Mg + Fe + Ca + Mn), (ca. 67 mol.%). This garnet displays a sinusoidal REE pattern that formed in equilibrium with carbonatitic fluid. Subsequently, subduction of the peridotite resulted in the formation of garnet with a slightly higher pyrope content (70 mol.%) during the Variscan subduction Stage 3 (950 degrees C, 2.9 GPa). These data suggest the following scenario for the generation of melt in the mantle wedge. Primarily, infiltration of sediment-derived potassic carbonatite melt into the deep mantle wedge resulted in the growth of phlogopite and carbonate/diamond. Formation of volatile-bearing minerals lowered the density and strength of the peridotite. Finally, phlogopite-bearing carbonated peridotite rose as diapirs in the mantle wedge to form carbonated potassic silicate melts at the base of the overriding lithosphere.
Název v anglickém jazyce
Fossilized Melts in Mantle Wedge Peridotites
Popis výsledku anglicky
The shallow oxidized asthenosphere may contain a small fraction of potassic silicate melts that are enriched in incompatible trace elements and volatiles. Here, to determine the chemical composition of such melt, we analysed fossilized melt inclusions, preserved as multiphase solid inclusions, from an orogenic garnet peridotite in the Bohemian Massif. Garnet-poor (2 vol.%) peridotite preserves inclusions of carbonated potassic silicate melt within Zn-poor chromite (<400 ppm) in the clinopyroxene-free harzburgite assemblage that equilibrated within the hot mantle wedge (Stage 1, >1180 degrees C at 3 GPa). The carbonated potassic silicate melt, which has a major element oxide chemical composition of K2O = 5.2 wt.%, CaO = 17 wt.%, MgO = 18 wt.%, CO2 = 22 wt.%, and SiO2 = 20 wt.%, contains extremely high concentrations of large ion lithophile elements, similar to kimberlite melts. Peridotites cooled down to. 800 degrees C during Stage 2, resulted in the growth of garnet relatively poor in pyrope content, molar Mg/(Mg + Fe + Ca + Mn), (ca. 67 mol.%). This garnet displays a sinusoidal REE pattern that formed in equilibrium with carbonatitic fluid. Subsequently, subduction of the peridotite resulted in the formation of garnet with a slightly higher pyrope content (70 mol.%) during the Variscan subduction Stage 3 (950 degrees C, 2.9 GPa). These data suggest the following scenario for the generation of melt in the mantle wedge. Primarily, infiltration of sediment-derived potassic carbonatite melt into the deep mantle wedge resulted in the growth of phlogopite and carbonate/diamond. Formation of volatile-bearing minerals lowered the density and strength of the peridotite. Finally, phlogopite-bearing carbonated peridotite rose as diapirs in the mantle wedge to form carbonated potassic silicate melts at the base of the overriding lithosphere.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
July 4 2018
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000437249200043
EID výsledku v databázi Scopus
2-s2.0-85049698445