Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dissolution and Reprecipitation of Garnet during Eclogite-facies Metamorphism, Major and Trace Element Transfer during Atoll Garnet Formation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F21%3A00548502" target="_blank" >RIV/67985831:_____/21:00548502 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/21:10441962

  • Výsledek na webu

    <a href="https://academic.oup.com/petrology/article/62/11/egab077/6370882" target="_blank" >https://academic.oup.com/petrology/article/62/11/egab077/6370882</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/petrology/egab077" target="_blank" >10.1093/petrology/egab077</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dissolution and Reprecipitation of Garnet during Eclogite-facies Metamorphism, Major and Trace Element Transfer during Atoll Garnet Formation

  • Popis výsledku v původním jazyce

    Garnet commonly accommodates high contents of Mn+Y+heavy rare earth elements (HREE) that follow Rayleigh fractionation during garnet early growth, with the exception of overstepping nucleation (late crystallization owing to reaction overstepping). Because of this, as the garnet porphyroblasts form mostly in equilibrium with the surrounding matrix, the concentration of these elements continuously decreases towards the porphyroblast rims. Yet rapid changes in the reaction progress of a rock during garnet growth, namely the resorption–dissolution of minerals with high concentrations of Y+REE, may create an anomaly or peak in the mantle or rim of garnet grains. In this study we present an example of the resorption of garnet cores and formation of atoll garnet textures in eclogite from the Kruˇsné hory (in the Saxothuringian tectonic zone of the Bohemian Massif). Based on textural relations, we show that the atoll garnet grains in the studied rocks were formed during the prograde stage from blueschist- to eclogite-facies metamorphism. Preliminary observations showed that the full (non-atoll) garnet grains had compositionally different cores (interior, or garnet I) and rims (ring, or garnet II) that were separated by a Y+HREE+medium REE (MREE) concentration peak. The ring garnet II indicated an elevated concentration of Mn in comparison with the marginal parts of the interior garnet I. Therefore, minor elements that were less vulnerable to diffusion than major elements and strongly sensitive to the broad spectrum of geochemical processes, such as Y+REE, were used to track possible mineral reactions during the whole garnet growth path. Thermodynamic modelling indicated the formation of garnet by the breakdown of chlorite and lawsonite/zoisite, and peak-pressure phases were represented by garnet, omphacite, quartz, amphibole, rutile, and talc. To quantify the sources of high Mn concentrations in garnet II and of the Y+HREE+MREE sharp peaks, the sequences of mineral reactions and dissolution of garnet I leading to the formation of the atoll structure were investigated. In addition to thermodynamic modelling and pressure–temperature path constraints, mass-balance calculations of trace elements were also performed. The results combined with the observed compositional and textural relations indicate that the concentrations of Mn+Y+HREE+MREE in garnet II and the concentration peaks at the interface of the two garnet types were controlled by a complex mechanism that included the dissolution of garnet I during the formation of the atoll texture, stepwise growth of garnet during increasing pressure and temperature, and decomposition of phases with high concentrations of trace elements, such as zoisite/epidote or lawsonite.

  • Název v anglickém jazyce

    Dissolution and Reprecipitation of Garnet during Eclogite-facies Metamorphism, Major and Trace Element Transfer during Atoll Garnet Formation

  • Popis výsledku anglicky

    Garnet commonly accommodates high contents of Mn+Y+heavy rare earth elements (HREE) that follow Rayleigh fractionation during garnet early growth, with the exception of overstepping nucleation (late crystallization owing to reaction overstepping). Because of this, as the garnet porphyroblasts form mostly in equilibrium with the surrounding matrix, the concentration of these elements continuously decreases towards the porphyroblast rims. Yet rapid changes in the reaction progress of a rock during garnet growth, namely the resorption–dissolution of minerals with high concentrations of Y+REE, may create an anomaly or peak in the mantle or rim of garnet grains. In this study we present an example of the resorption of garnet cores and formation of atoll garnet textures in eclogite from the Kruˇsné hory (in the Saxothuringian tectonic zone of the Bohemian Massif). Based on textural relations, we show that the atoll garnet grains in the studied rocks were formed during the prograde stage from blueschist- to eclogite-facies metamorphism. Preliminary observations showed that the full (non-atoll) garnet grains had compositionally different cores (interior, or garnet I) and rims (ring, or garnet II) that were separated by a Y+HREE+medium REE (MREE) concentration peak. The ring garnet II indicated an elevated concentration of Mn in comparison with the marginal parts of the interior garnet I. Therefore, minor elements that were less vulnerable to diffusion than major elements and strongly sensitive to the broad spectrum of geochemical processes, such as Y+REE, were used to track possible mineral reactions during the whole garnet growth path. Thermodynamic modelling indicated the formation of garnet by the breakdown of chlorite and lawsonite/zoisite, and peak-pressure phases were represented by garnet, omphacite, quartz, amphibole, rutile, and talc. To quantify the sources of high Mn concentrations in garnet II and of the Y+HREE+MREE sharp peaks, the sequences of mineral reactions and dissolution of garnet I leading to the formation of the atoll structure were investigated. In addition to thermodynamic modelling and pressure–temperature path constraints, mass-balance calculations of trace elements were also performed. The results combined with the observed compositional and textural relations indicate that the concentrations of Mn+Y+HREE+MREE in garnet II and the concentration peaks at the interface of the two garnet types were controlled by a complex mechanism that included the dissolution of garnet I during the formation of the atoll texture, stepwise growth of garnet during increasing pressure and temperature, and decomposition of phases with high concentrations of trace elements, such as zoisite/epidote or lawsonite.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-03160S" target="_blank" >GA18-03160S: Před- až synkolizní vývoj metamorfovaných hornin v orogenní zóně zaznamenaný chemickou zonálností v granátu; na příkladu Českého masívu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Petrology

  • ISSN

    0022-3530

  • e-ISSN

    1460-2415

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

    000745050100015

  • EID výsledku v databázi Scopus

    2-s2.0-85120874212