Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural network for determining an asteroid mineral composition from reflectance spectra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F23%3A00568791" target="_blank" >RIV/67985831:_____/23:00568791 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aanda.org/articles/aa/full_html/2023/01/aa43886-22/aa43886-22.html" target="_blank" >https://www.aanda.org/articles/aa/full_html/2023/01/aa43886-22/aa43886-22.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202243886" target="_blank" >10.1051/0004-6361/202243886</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural network for determining an asteroid mineral composition from reflectance spectra

  • Popis výsledku v původním jazyce

    Context. Chemical and mineral compositions of asteroids reflect the formation and history of our Solar System. This knowledge is also important for planetary defence and in-space resource utilisation. In the next years, space missions will generate extensive spectral datasets from asteroids or planets with spectra that will need to be processed in real time.nAims. We aim to develop a fast and robust neural-network-based method for deriving the mineral modal and chemical compositions of silicate materials from their visible and near-infrared spectra. The method should be able to process raw spectra without significant pre-processing.nMethods. We designed a convolutional neural network with two hidden layers for the analysis of the spectra, and trained it using labelled reflectance spectra. For the training, we used a dataset that consisted of reflectance spectra of real silicate samples stored in the RELAB and C-Tape databases, namely olivine, orthopyroxene, clinopyroxene, their mixtures, and olivine-pyroxene-rich meteorites.nResults. We used the model on two datasets. First, we evaluated the model reliability on a test dataset where we compared the model classification with known compositional reference values. The individual classification results are mostly within 10 percentage-point intervals around the correct values. Second, we classified the reflectance spectra of S-complex (Q-type and V-type, also including Atype) asteroids with known Bus–DeMeo taxonomy classes. The predicted mineral chemical composition of S-type and Q-type asteroids agree with the chemical composition of ordinary chondrites. The modal abundances of V-type and A-type asteroids show a dominant contribution of orthopyroxene and olivine, respectively. Additionally, our predictions of the mineral modal composition of S-type and Q-type asteroids show an apparent depletion of olivine related to the attenuation of its diagnostic absorptions with space weathering. This trend is consistent with previous results of the slower pyroxene response to space weathering relative to olivine.nConclusions. The neural network trained with real silicate samples and their mixtures is applicable for a quantitative mineral evaluation of spectra of asteroids that are rich in dry silicates. The modal abundances and mineral chemistry of common silicates (olivine and pyroxene) can be derived with an accuracy better than 10 percentage points. The classification is fast and has a relatively small computer-memory footprint. Therefore, our code is suitable for processing large spectral datasets in real time.

  • Název v anglickém jazyce

    Neural network for determining an asteroid mineral composition from reflectance spectra

  • Popis výsledku anglicky

    Context. Chemical and mineral compositions of asteroids reflect the formation and history of our Solar System. This knowledge is also important for planetary defence and in-space resource utilisation. In the next years, space missions will generate extensive spectral datasets from asteroids or planets with spectra that will need to be processed in real time.nAims. We aim to develop a fast and robust neural-network-based method for deriving the mineral modal and chemical compositions of silicate materials from their visible and near-infrared spectra. The method should be able to process raw spectra without significant pre-processing.nMethods. We designed a convolutional neural network with two hidden layers for the analysis of the spectra, and trained it using labelled reflectance spectra. For the training, we used a dataset that consisted of reflectance spectra of real silicate samples stored in the RELAB and C-Tape databases, namely olivine, orthopyroxene, clinopyroxene, their mixtures, and olivine-pyroxene-rich meteorites.nResults. We used the model on two datasets. First, we evaluated the model reliability on a test dataset where we compared the model classification with known compositional reference values. The individual classification results are mostly within 10 percentage-point intervals around the correct values. Second, we classified the reflectance spectra of S-complex (Q-type and V-type, also including Atype) asteroids with known Bus–DeMeo taxonomy classes. The predicted mineral chemical composition of S-type and Q-type asteroids agree with the chemical composition of ordinary chondrites. The modal abundances of V-type and A-type asteroids show a dominant contribution of orthopyroxene and olivine, respectively. Additionally, our predictions of the mineral modal composition of S-type and Q-type asteroids show an apparent depletion of olivine related to the attenuation of its diagnostic absorptions with space weathering. This trend is consistent with previous results of the slower pyroxene response to space weathering relative to olivine.nConclusions. The neural network trained with real silicate samples and their mixtures is applicable for a quantitative mineral evaluation of spectra of asteroids that are rich in dry silicates. The modal abundances and mineral chemistry of common silicates (olivine and pyroxene) can be derived with an accuracy better than 10 percentage points. The classification is fast and has a relatively small computer-memory footprint. Therefore, our code is suitable for processing large spectral datasets in real time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Svazek periodika

    669

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    19

  • Strana od-do

    A101

  • Kód UT WoS článku

    000917090200010

  • EID výsledku v databázi Scopus

    2-s2.0-85146855469