Operátor je součinem dvou quasinilpotentů právě když není semi-Fredholmův
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F06%3A00047586" target="_blank" >RIV/67985840:_____/06:00047586 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
Popis výsledku v původním jazyce
We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989.
Název v anglickém jazyce
An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
Popis výsledku anglicky
We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F0041" target="_blank" >GA201/03/0041: Metody teorie funkcí a Banachových algeber v teorii operátorů II.</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Royal Society of Edinburgh. A - Mathematics
ISSN
0308-2105
e-ISSN
—
Svazek periodika
136A
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
935-944
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—