Asymptotické chování singulárního modelu fázového přechodu
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F06%3A00324294" target="_blank" >RIV/67985840:_____/06:00324294 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Long time behaviour of a singular phase transition model
Popis výsledku v původním jazyce
A phase-field system, non-local in space and non-smooth in time, with heat flux proportional to the gradient of the inverse temperature, is shown to admit a unique strong thermodynamically consistent solution on the whole time axis. The temperature remains globally bounded both from above and from below, and its space gradient as well as the time derivative of the order parameter asymptotically vanish in L2-norm as time tends to infinity.
Název v anglickém jazyce
Long time behaviour of a singular phase transition model
Popis výsledku anglicky
A phase-field system, non-local in space and non-smooth in time, with heat flux proportional to the gradient of the inverse temperature, is shown to admit a unique strong thermodynamically consistent solution on the whole time axis. The temperature remains globally bounded both from above and from below, and its space gradient as well as the time derivative of the order parameter asymptotically vanish in L2-norm as time tends to infinity.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000236645300006
EID výsledku v databázi Scopus
—