Kritická vnoření s iterovanými přerovnáními
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00085967" target="_blank" >RIV/67985840:_____/07:00085967 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Critical imbeddings with multivariate rearrangements
Popis výsledku v původním jazyce
The paper deals with imbeddings of general spaces of Besov and Lizorkin-Triebel type with dominating mixed derivatives in the first critical case. Multivariate exponential Orlicz and Lorentz-Orlicz spaces are used as targets. Basic properties of the target spaces are studied, in particular, there are comparisons with usual exponential spaces in the paper, showing that the multivariate clones are in fact better adapted to the character of smoothness of the imbedded spaces. Sharp limiting imbedding theorems and estimates for the multivariate growth envelope functions are established.
Název v anglickém jazyce
Critical imbeddings with multivariate rearrangements
Popis výsledku anglicky
The paper deals with imbeddings of general spaces of Besov and Lizorkin-Triebel type with dominating mixed derivatives in the first critical case. Multivariate exponential Orlicz and Lorentz-Orlicz spaces are used as targets. Basic properties of the target spaces are studied, in particular, there are comparisons with usual exponential spaces in the paper, showing that the multivariate clones are in fact better adapted to the character of smoothness of the imbedded spaces. Sharp limiting imbedding theorems and estimates for the multivariate growth envelope functions are established.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F06%2F0400" target="_blank" >GA201/06/0400: Moderní metody v prostorech funkcí a aplikace</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia mathematica
ISSN
0039-3223
e-ISSN
—
Svazek periodika
181
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
34
Strana od-do
255-284
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—