Stabilita stacionárního vazkého nestlačitelného proudu okolo tělesa
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00323453" target="_blank" >RIV/67985840:_____/09:00323453 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability of a Steady Viscous Incompressible Flow Past an Obstacle
Popis výsledku v původním jazyce
We drive a sufficient condition for stability of a steady solution of the Navier-Stokes equation in a 3D exterior domain .omega.. The condition is formulated as a requirement on integrability on the time interval (0,+.INFIN.) of a semigroup generated bythe linearized problem for perturbations, applied to a finite family of certain functions. The norm of the semigroup is measured in a bounded sub-domain of .omega.. We do not use any condition on "smallness" of the basic steady solution.
Název v anglickém jazyce
Stability of a Steady Viscous Incompressible Flow Past an Obstacle
Popis výsledku anglicky
We drive a sufficient condition for stability of a steady solution of the Navier-Stokes equation in a 3D exterior domain .omega.. The condition is formulated as a requirement on integrability on the time interval (0,+.INFIN.) of a semigroup generated bythe linearized problem for perturbations, applied to a finite family of certain functions. The norm of the semigroup is measured in a bounded sub-domain of .omega.. We do not use any condition on "smallness" of the basic steady solution.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F05%2F0005" target="_blank" >GA201/05/0005: Matematická teorie a numerická simulace problémů mechaniky tekutin</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000266552300002
EID výsledku v databázi Scopus
—