Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Substituční Fregovské a rozšířené Fregovské důkazové systémy v neklasických logikách

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00323651" target="_blank" >RIV/67985840:_____/09:00323651 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Substitution Frege and extended Frege proof systems in non-classical logics

  • Popis výsledku v původním jazyce

    We investigate the substitution Frege (SF) proof system and its relationship to extended Frege (EF) in the context of modal and superintuitionistic (si) propositional logics. We show that EF is p-equivalent to tree-like SF, and we develop a "normal form"for SF-proofs. We establish connections between SF for a logic L, and EF for certain bimodal expansions of L. We then turn attention to specific families of modal and si logics. We prove p-equivalence of EF and SF for all extensions of KB, all tabular logics, all logics of finite depth and width, and typical examples of logics of finite width and infinite depth. In most cases, we actually show an equivalence with the usual EF system for classical logic with respect to a naturally defined translation. On the other hand, we establish exponential speed-up of SF over EF for all modal and si logics of infinite branching, extending recent lower bounds by P. Hrubeš.

  • Název v anglickém jazyce

    Substitution Frege and extended Frege proof systems in non-classical logics

  • Popis výsledku anglicky

    We investigate the substitution Frege (SF) proof system and its relationship to extended Frege (EF) in the context of modal and superintuitionistic (si) propositional logics. We show that EF is p-equivalent to tree-like SF, and we develop a "normal form"for SF-proofs. We establish connections between SF for a logic L, and EF for certain bimodal expansions of L. We then turn attention to specific families of modal and si logics. We prove p-equivalence of EF and SF for all extensions of KB, all tabular logics, all logics of finite depth and width, and typical examples of logics of finite width and infinite depth. In most cases, we actually show an equivalence with the usual EF system for classical logic with respect to a naturally defined translation. On the other hand, we establish exponential speed-up of SF over EF for all modal and si logics of infinite branching, extending recent lower bounds by P. Hrubeš.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA1019401" target="_blank" >IAA1019401: Teorie, důkazy a výpočetní složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

  • Svazek periodika

    159

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    48

  • Strana od-do

  • Kód UT WoS článku

    000266337700001

  • EID výsledku v databázi Scopus