Absolutely continuous functions of two varables in the sense of Carathéodory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00349672" target="_blank" >RIV/67985840:_____/10:00349672 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Absolutely continuous functions of two varables in the sense of Carathéodory
Popis výsledku v původním jazyce
In this note, the notion of absolute continuity of functions of two variables is discussed. We recall that the set of functions of two variables absolutely continuous in the sense of Caratheodory coincides with the class of functions admitting a certainintegral representation. We show that absolutely continuous functions in the sense of Caratheodory can be equivalently characterized in terms of their properties with respect to each of variables. These equivalent characterizations play an important rolein the investigation of boundary value problems for partial differential equation of hyperbolic type with discontinuous right-hand side. We present several statements which are rather important when analyzing strong solutions of such problems by using the methods of real analysis but, unfortunately, are not formulated and proven precisely in the existing literature, which mostly deals with weak solutions or the case where the right-hand side of the equation is continuous.
Název v anglickém jazyce
Absolutely continuous functions of two varables in the sense of Carathéodory
Popis výsledku anglicky
In this note, the notion of absolute continuity of functions of two variables is discussed. We recall that the set of functions of two variables absolutely continuous in the sense of Caratheodory coincides with the class of functions admitting a certainintegral representation. We show that absolutely continuous functions in the sense of Caratheodory can be equivalently characterized in terms of their properties with respect to each of variables. These equivalent characterizations play an important rolein the investigation of boundary value problems for partial differential equation of hyperbolic type with discontinuous right-hand side. We present several statements which are rather important when analyzing strong solutions of such problems by using the methods of real analysis but, unfortunately, are not formulated and proven precisely in the existing literature, which mostly deals with weak solutions or the case where the right-hand side of the equation is continuous.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F06%2F0254" target="_blank" >GA201/06/0254: Funkcionální diferenciální rovnice v Banachových prostorech</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Svazek periodika
2010
Číslo periodika v rámci svazku
154
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—