q-Karamata functions and second order q-difference equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00374109" target="_blank" >RIV/67985840:_____/11:00374109 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/11:PU91909 RIV/00216224:14410/11:00050560
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
q-Karamata functions and second order q-difference equations
Popis výsledku v původním jazyce
In this paper we introduce and study q-rapidly varying functions on the lattice q(N0) := {q(k) : k is an element of N(0)}, q > 1, which naturally extend the recently established concept of q-regularly varying functions. These types of functions togetherform the class of the so-called q-Karamata functions. The theory of q-Karamata functions is then applied to half-linear q-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as q-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the q-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other q-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our
Název v anglickém jazyce
q-Karamata functions and second order q-difference equations
Popis výsledku anglicky
In this paper we introduce and study q-rapidly varying functions on the lattice q(N0) := {q(k) : k is an element of N(0)}, q > 1, which naturally extend the recently established concept of q-regularly varying functions. These types of functions togetherform the class of the so-called q-Karamata functions. The theory of q-Karamata functions is then applied to half-linear q-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as q-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the q-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other q-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Diferenční rovnice a dynamické rovnice na ,,time scales'' III</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Qualitative Theory of Differential Equations.
ISSN
1417-3875
e-ISSN
—
Svazek periodika
-
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000289152400001
EID výsledku v databázi Scopus
—