The ordering principle in a fragment of approximate counting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00437494" target="_blank" >RIV/67985840:_____/14:00437494 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2629555" target="_blank" >http://dx.doi.org/10.1145/2629555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2629555" target="_blank" >10.1145/2629555</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The ordering principle in a fragment of approximate counting
Popis výsledku v původním jazyce
The ordering principle states that every finite linear order has a least element. We show that, in the relativized setting, the surjective weak pigeonhole principle for polynomial time functions does not prove a Herbrandized version of the ordering principle over T12. This answers an open question raised in Buss et al. [2012] and completes their program to compare the strength of Jeřábek's bounded arithmetic theory for approximate counting with weakened versions of it.
Název v anglickém jazyce
The ordering principle in a fragment of approximate counting
Popis výsledku anglicky
The ordering principle states that every finite linear order has a least element. We show that, in the relativized setting, the surjective weak pigeonhole principle for polynomial time functions does not prove a Herbrandized version of the ordering principle over T12. This answers an open question raised in Buss et al. [2012] and completes their program to compare the strength of Jeřábek's bounded arithmetic theory for approximate counting with weakened versions of it.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computational Logic
ISSN
1529-3785
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000345570700004
EID výsledku v databázi Scopus
—