Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Why quintic polynomial equations are not solvable in radicals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00450751" target="_blank" >RIV/67985840:_____/15:00450751 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Why quintic polynomial equations are not solvable in radicals

  • Popis výsledku v původním jazyce

    We illustrate the main idea of Galois theory, by which roots of a polynomial equation of at least fifth degree with rational coefficients cannot general be expressed bz radicals, i.e., by the operations +, -, ., :, and .... Therefore, higher order polynomial equations are usually solved by approximate methods. They can also be solved algebraically by means of ultraradicals.

  • Název v anglickém jazyce

    Why quintic polynomial equations are not solvable in radicals

  • Popis výsledku anglicky

    We illustrate the main idea of Galois theory, by which roots of a polynomial equation of at least fifth degree with rational coefficients cannot general be expressed bz radicals, i.e., by the operations +, -, ., :, and .... Therefore, higher order polynomial equations are usually solved by approximate methods. They can also be solved algebraically by means of ultraradicals.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Applications of Mathematics 2015

  • ISBN

    978-80-85823-65-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    125-131

  • Název nakladatele

    Institute of Mathematics CAS

  • Místo vydání

    Prague

  • Místo konání akce

    Prague

  • Datum konání akce

    18. 11. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku