An algorithmic metatheorem for directed treewidth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458530" target="_blank" >RIV/67985840:_____/16:00458530 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.dam.2015.10.020" target="_blank" >http://dx.doi.org/10.1016/j.dam.2015.10.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2015.10.020" target="_blank" >10.1016/j.dam.2015.10.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An algorithmic metatheorem for directed treewidth
Popis výsledku v původním jazyce
The notion of directed treewidth was introduced by Johnson et al. (2001) as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete properties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem.
Název v anglickém jazyce
An algorithmic metatheorem for directed treewidth
Popis výsledku anglicky
The notion of directed treewidth was introduced by Johnson et al. (2001) as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete properties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
204
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
49-76
Kód UT WoS článku
000374354300007
EID výsledku v databázi Scopus
2-s2.0-84992309958