Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An algorithmic metatheorem for directed treewidth

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458530" target="_blank" >RIV/67985840:_____/16:00458530 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.dam.2015.10.020" target="_blank" >http://dx.doi.org/10.1016/j.dam.2015.10.020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2015.10.020" target="_blank" >10.1016/j.dam.2015.10.020</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An algorithmic metatheorem for directed treewidth

  • Popis výsledku v původním jazyce

    The notion of directed treewidth was introduced by Johnson et al. (2001) as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete properties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem.

  • Název v anglickém jazyce

    An algorithmic metatheorem for directed treewidth

  • Popis výsledku anglicky

    The notion of directed treewidth was introduced by Johnson et al. (2001) as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete properties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    204

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    28

  • Strana od-do

    49-76

  • Kód UT WoS článku

    000374354300007

  • EID výsledku v databázi Scopus

    2-s2.0-84992309958