Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460232" target="_blank" >RIV/67985840:_____/16:00460232 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >http://dx.doi.org/10.1007/s00605-015-0774-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >10.1007/s00605-015-0774-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

  • Popis výsledku v původním jazyce

    In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible. In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.

  • Název v anglickém jazyce

    Bounded convergence theorem for abstract Kurzweil–Stieltjes integral

  • Popis výsledku anglicky

    In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible. In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-06958S" target="_blank" >GA14-06958S: Singularity a impulsy v okrajových úlohách pro nelineární obyčejné diferenciální rovnice</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Svazek periodika

    180

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    26

  • Strana od-do

    409-434

  • Kód UT WoS článku

    000378786900001

  • EID výsledku v databázi Scopus

    2-s2.0-84931049667