Bounded convergence theorem for abstract Kurzweil–Stieltjes integral
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460232" target="_blank" >RIV/67985840:_____/16:00460232 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >http://dx.doi.org/10.1007/s00605-015-0774-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-015-0774-z" target="_blank" >10.1007/s00605-015-0774-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounded convergence theorem for abstract Kurzweil–Stieltjes integral
Popis výsledku v původním jazyce
In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible. In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.
Název v anglickém jazyce
Bounded convergence theorem for abstract Kurzweil–Stieltjes integral
Popis výsledku anglicky
In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible. In the theories of Lebesgue integration and of ordinary differential equations, the Lebesgue Dominated Convergence Theorem provides one of the most widely used tools. Available analogy in the Riemann or Riemann–Stieltjes integration is the Bounded Convergence Theorem, sometimes called also the Arzelà or Arzelà–Osgood or Osgood Theorem. In the setting of the Kurzweil–Stieltjes integral for real valued functions its proof can be obtained by a slight modification of the proof given for the ...-Young–Stieltjes integral by T.H. Hildebrandt in his monograph from 1963. However, it is clear that the Hildebrandt’s proof cannot be extended to the case of Banach space-valued functions. Moreover, it essentially utilizes the Arzelà Lemma which does not fit too much into elementary text-books. In this paper, we present the proof of the Bounded Convergence Theorem for the abstract Kurzweil–Stieltjes integral in a setting elementary as much as possible.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-06958S" target="_blank" >GA14-06958S: Singularity a impulsy v okrajových úlohách pro nelineární obyčejné diferenciální rovnice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Svazek periodika
180
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
26
Strana od-do
409-434
Kód UT WoS článku
000378786900001
EID výsledku v databázi Scopus
2-s2.0-84931049667