Piecewise Testable Languages and Nondeterministic Automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462039" target="_blank" >RIV/67985840:_____/16:00462039 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.67" target="_blank" >10.4230/LIPIcs.MFCS.2016.67</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Piecewise Testable Languages and Nondeterministic Automata
Popis výsledku v původním jazyce
A regular language is $k$-piecewise testable if it is a finite boolean combination of languages of the form $Sigma^* a_1 Sigma^* cdots Sigma^* a_n Sigma^*$, where $a_iinSigma$ and $0le n le k$. Given a DFA $A$ and $kge 0$, it is an NL-complete problem to decide whether the language $L(A)$ is piecewise testable and, for $kge 4$, it is coNP-complete to decide whether the language $L(A)$ is $k$-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on $k$. Namely, if $L(A)$ is piecewise testable, then it is $k$-piecewise testable for $k$ equal to the depth of $A$. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on $k$ than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.
Název v anglickém jazyce
Piecewise Testable Languages and Nondeterministic Automata
Popis výsledku anglicky
A regular language is $k$-piecewise testable if it is a finite boolean combination of languages of the form $Sigma^* a_1 Sigma^* cdots Sigma^* a_n Sigma^*$, where $a_iinSigma$ and $0le n le k$. Given a DFA $A$ and $kge 0$, it is an NL-complete problem to decide whether the language $L(A)$ is piecewise testable and, for $kge 4$, it is coNP-complete to decide whether the language $L(A)$ is $k$-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on $k$. Namely, if $L(A)$ is piecewise testable, then it is $k$-piecewise testable for $k$ equal to the depth of $A$. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on $k$ than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)
ISBN
978-3-95977-016-3
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
—
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Krakow
Datum konání akce
22. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—