Complexity of deciding detectability in discrete event systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488849" target="_blank" >RIV/67985840:_____/18:00488849 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.automatica.2018.03.077" target="_blank" >http://dx.doi.org/10.1016/j.automatica.2018.03.077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2018.03.077" target="_blank" >10.1016/j.automatica.2018.03.077</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of deciding detectability in discrete event systems
Popis výsledku v původním jazyce
Detectability of discrete event systems (DESs) is a question whether the current and subsequent states can be determined based on observations. Shu and Lin designed a polynomial-time algorithm to check strong (periodic) detectability and an exponential-time (polynomial-space) algorithm to check weak (periodic) detectability. Zhang showed that checking weak (periodic) detectability is PSpace-complete. This intractable complexity opens a question whether there are structurally simpler DESs for which the problem is tractable. In this paper, we show that it is not the case by considering DESs represented as deterministic finite automata without non-trivial cycles, which are structurally the simplest deadlock-free DESs. We show that even for such very simple DESs, checking weak (periodic) detectability remains intractable. On the contrary, we show that strong (periodic) detectability of DESs can be efficiently verified on a parallel computer.
Název v anglickém jazyce
Complexity of deciding detectability in discrete event systems
Popis výsledku anglicky
Detectability of discrete event systems (DESs) is a question whether the current and subsequent states can be determined based on observations. Shu and Lin designed a polynomial-time algorithm to check strong (periodic) detectability and an exponential-time (polynomial-space) algorithm to check weak (periodic) detectability. Zhang showed that checking weak (periodic) detectability is PSpace-complete. This intractable complexity opens a question whether there are structurally simpler DESs for which the problem is tractable. In this paper, we show that it is not the case by considering DESs represented as deterministic finite automata without non-trivial cycles, which are structurally the simplest deadlock-free DESs. We show that even for such very simple DESs, checking weak (periodic) detectability remains intractable. On the contrary, we show that strong (periodic) detectability of DESs can be efficiently verified on a parallel computer.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Automatica
ISSN
0005-1098
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
257-261
Kód UT WoS článku
000436916200027
EID výsledku v databázi Scopus
2-s2.0-85044569159