IDEAL characterization of higher dimensional spherically symmetric black holes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00501124" target="_blank" >RIV/67985840:_____/19:00501124 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1361-6382/aafcf1" target="_blank" >http://dx.doi.org/10.1088/1361-6382/aafcf1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/aafcf1" target="_blank" >10.1088/1361-6382/aafcf1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IDEAL characterization of higher dimensional spherically symmetric black holes
Popis výsledku v původním jazyce
In general relativity, an IDEAL (intrinsic, deductive, explicit, algorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g] = 0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. We give the first IDEAL characterization of generalized Schwarzschild–Tangherlini spacetimes, which consist of -vacuum extensions of higher dimensional spherically symmetric black holes, as well as their versions where spheres are replaced by flat or hyperbolic spaces. The standard Schwarzschild black hole has been previously characterized in the work of Ferrando and Sáez, but using methods highly specific to 4 dimensions. Specialized to 4 dimensions, our result provides an independent, alternative characterization. We also give a proof of a version of Birkhoff's theorem that is applicable also on neighborhoods of horizon and horizon bifurcation points, which is necessary for our arguments.
Název v anglickém jazyce
IDEAL characterization of higher dimensional spherically symmetric black holes
Popis výsledku anglicky
In general relativity, an IDEAL (intrinsic, deductive, explicit, algorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g] = 0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. We give the first IDEAL characterization of generalized Schwarzschild–Tangherlini spacetimes, which consist of -vacuum extensions of higher dimensional spherically symmetric black holes, as well as their versions where spheres are replaced by flat or hyperbolic spaces. The standard Schwarzschild black hole has been previously characterized in the work of Ferrando and Sáez, but using methods highly specific to 4 dimensions. Specialized to 4 dimensions, our result provides an independent, alternative characterization. We also give a proof of a version of Birkhoff's theorem that is applicable also on neighborhoods of horizon and horizon bifurcation points, which is necessary for our arguments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07776S" target="_blank" >GA18-07776S: Vyšší struktury v algebře, geometrii a matematické fyzice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
045001
Kód UT WoS článku
000456843300001
EID výsledku v databázi Scopus
2-s2.0-85062625954