Automatic generation of optimal reductions of distributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00502163" target="_blank" >RIV/67985840:_____/19:00502163 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TAC.2018.2828105" target="_blank" >http://dx.doi.org/10.1109/TAC.2018.2828105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2018.2828105" target="_blank" >10.1109/TAC.2018.2828105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic generation of optimal reductions of distributions
Popis výsledku v původním jazyce
A reduction of a source distribution is a collection of smaller sized distributions that are collectively equivalent to the source distribution with respect to the property of decomposability. That is, an arbitrary language is decomposable with respect to the source distribution if and only if it is decomposable with respect to each smaller sized distribution (in the reduction). The notion of reduction of distributions has previously been proposed to improve the complexity of decomposability verification. In this paper, we address the problem of generating (optimal) reductions of distributions automatically. A (partial) solution to this problem is provided, which consists of an incremental algorithm for the production of candidate reductions and a reduction validation procedure. In the incremental production stage, backtracking is applied whenever a candidate reduction that cannot be validated is produced. A strengthened substitution-based proof technique is used for reduction validation, while a fixed template of candidate counter examples is used for reduction refutation, put together, they constitute our (partial) solution to the reduction verification problem. In addition, we show that a recursive approach for the generation of (small) reductions is easily supported.
Název v anglickém jazyce
Automatic generation of optimal reductions of distributions
Popis výsledku anglicky
A reduction of a source distribution is a collection of smaller sized distributions that are collectively equivalent to the source distribution with respect to the property of decomposability. That is, an arbitrary language is decomposable with respect to the source distribution if and only if it is decomposable with respect to each smaller sized distribution (in the reduction). The notion of reduction of distributions has previously been proposed to improve the complexity of decomposability verification. In this paper, we address the problem of generating (optimal) reductions of distributions automatically. A (partial) solution to this problem is provided, which consists of an incremental algorithm for the production of candidate reductions and a reduction validation procedure. In the incremental production stage, backtracking is applied whenever a candidate reduction that cannot be validated is produced. A strengthened substitution-based proof technique is used for reduction validation, while a fixed template of candidate counter examples is used for reduction refutation, put together, they constitute our (partial) solution to the reduction verification problem. In addition, we show that a recursive approach for the generation of (small) reductions is easily supported.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
896-911
Kód UT WoS článku
000460415600002
EID výsledku v databázi Scopus
2-s2.0-85045751913