Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Why are proof complexity lower bounds hard?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00523286" target="_blank" >RIV/67985840:_____/19:00523286 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/FOCS.2019.00080" target="_blank" >http://dx.doi.org/10.1109/FOCS.2019.00080</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FOCS.2019.00080" target="_blank" >10.1109/FOCS.2019.00080</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Why are proof complexity lower bounds hard?

  • Popis výsledku v původním jazyce

    We formalize and study the question of whether there are inherent difficulties to showing lower bounds on propositional proof complexity. We establish the following unconditional result: Propositional proof systems cannot efficiently show that truth tables of random Boolean functions lack polynomial size non-uniform proofs of hardness. Assuming a conjecture of Rudich, propositional proof systems also cannot efficiently show that random k-CNFs of linear density lack polynomial size non-uniform proofs of unsatisfiability. Since the statements in question assert the average-case hardness of standard NP problems (MCSP and 3-SAT respectively) against co-nondeterministic circuits for natural distributions, one interpretation of our result is that propositional proof systems are inherently incapable of efficiently proving strong complexity lower bounds in our formalization. Another interpretation is that an analogue of the Razborov-Rudich 'natural proofs' barrier holds in proof complexity: under reasonable hardness assumptions, there are natural distributions on hard tautologies for which it is infeasible to show proof complexity lower bounds for strong enough proof systems. For the specific case of the Extended Frege (EF) propositional proof system, we show that at least one of the following cases holds: (1) EF has no efficient proofs of superpolynomial circuit lower bound tautologies for any Boolean function or (2) There is an explicit family of tautologies of each length such that under reasonable hardness assumptions, most tautologies are hard but no propositional proof system can efficiently establish hardness for most tautologies in the family. Thus, under reasonable hardness assumptions, either the Circuit Lower Bounds program toward complexity separations cannot be implemented in EF, or there are inherent obstacles to implementing the Cook-Reckhow program for EF.

  • Název v anglickém jazyce

    Why are proof complexity lower bounds hard?

  • Popis výsledku anglicky

    We formalize and study the question of whether there are inherent difficulties to showing lower bounds on propositional proof complexity. We establish the following unconditional result: Propositional proof systems cannot efficiently show that truth tables of random Boolean functions lack polynomial size non-uniform proofs of hardness. Assuming a conjecture of Rudich, propositional proof systems also cannot efficiently show that random k-CNFs of linear density lack polynomial size non-uniform proofs of unsatisfiability. Since the statements in question assert the average-case hardness of standard NP problems (MCSP and 3-SAT respectively) against co-nondeterministic circuits for natural distributions, one interpretation of our result is that propositional proof systems are inherently incapable of efficiently proving strong complexity lower bounds in our formalization. Another interpretation is that an analogue of the Razborov-Rudich 'natural proofs' barrier holds in proof complexity: under reasonable hardness assumptions, there are natural distributions on hard tautologies for which it is infeasible to show proof complexity lower bounds for strong enough proof systems. For the specific case of the Extended Frege (EF) propositional proof system, we show that at least one of the following cases holds: (1) EF has no efficient proofs of superpolynomial circuit lower bound tautologies for any Boolean function or (2) There is an explicit family of tautologies of each length such that under reasonable hardness assumptions, most tautologies are hard but no propositional proof system can efficiently establish hardness for most tautologies in the family. Thus, under reasonable hardness assumptions, either the Circuit Lower Bounds program toward complexity separations cannot be implemented in EF, or there are inherent obstacles to implementing the Cook-Reckhow program for EF.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019)

  • ISBN

    978-1-7281-4952-3

  • ISSN

    0272-5428

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    1305-1324

  • Název nakladatele

    IEEE

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Baltimore

  • Datum konání akce

    9. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000510015300071