Chaos in delay-induced Leslie–Gower prey–predator–parasite model and its control through prey harvesting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00507952" target="_blank" >RIV/67985840:_____/20:00507952 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.nonrwa.2019.102998" target="_blank" >https://doi.org/10.1016/j.nonrwa.2019.102998</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2019.102998" target="_blank" >10.1016/j.nonrwa.2019.102998</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chaos in delay-induced Leslie–Gower prey–predator–parasite model and its control through prey harvesting
Popis výsledku v původním jazyce
In this paper we analyze a delay-induced predator–prey–parasite model with prey harvesting, where the predator–prey interaction is represented by Leslie–Gower type model with type II functional response. Infection is assumed to spread horizontally from one infected prey to another susceptible prey following mass action law. Spreading of disease is not instantaneous but mediated by a time lag to take into account the time required for incubation process. Both the susceptible and infected preys are subjected to linear harvesting. The analysis is accomplished in two phases. First we analyze the delay-induced predator–prey–parasite system in absence of harvesting and proved the local & global dynamics of different (six) equilibrium points. It is proved that the delay has no influence on the stability of different equilibrium points except the interior one.
Název v anglickém jazyce
Chaos in delay-induced Leslie–Gower prey–predator–parasite model and its control through prey harvesting
Popis výsledku anglicky
In this paper we analyze a delay-induced predator–prey–parasite model with prey harvesting, where the predator–prey interaction is represented by Leslie–Gower type model with type II functional response. Infection is assumed to spread horizontally from one infected prey to another susceptible prey following mass action law. Spreading of disease is not instantaneous but mediated by a time lag to take into account the time required for incubation process. Both the susceptible and infected preys are subjected to linear harvesting. The analysis is accomplished in two phases. First we analyze the delay-induced predator–prey–parasite system in absence of harvesting and proved the local & global dynamics of different (six) equilibrium points. It is proved that the delay has no influence on the stability of different equilibrium points except the interior one.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
102998
Kód UT WoS článku
000488994500021
EID výsledku v databázi Scopus
2-s2.0-85070383791