Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Temporal artificial stress diffusion for numerical simulations of Oldroyd-B fluid flow

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00552865" target="_blank" >RIV/67985840:_____/22:00552865 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21220/22:00356600

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math10030404" target="_blank" >https://doi.org/10.3390/math10030404</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10030404" target="_blank" >10.3390/math10030404</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Temporal artificial stress diffusion for numerical simulations of Oldroyd-B fluid flow

  • Popis výsledku v původním jazyce

    This paper presents a numerical evaluation of two different artificial stress diffusion techniques for the stabilization of viscoelastic Oldroyd-B fluid flows at high Weissenberg numbers. The standard artificial diffusion in the form of a Laplacian of the extra stress tensor is compared with a newly proposed approach using a discrete time derivative of the Laplacian of the extra stress tensor. Both methods are implemented in a finite element code and demonstrated in the solution of a viscoelastic fluid flow in a two-dimensional corrugated channel for a range of Weissenberg numbers. The numerical simulations have shown that this new temporal stress diffusion not only efficiently stabilizes numerical simulations, but also vanishes when the solution reaches a steady state. It is demonstrated that in contrast to the standard tensorial diffusion, the temporal artificial stress diffusion does not affect the final solution.

  • Název v anglickém jazyce

    Temporal artificial stress diffusion for numerical simulations of Oldroyd-B fluid flow

  • Popis výsledku anglicky

    This paper presents a numerical evaluation of two different artificial stress diffusion techniques for the stabilization of viscoelastic Oldroyd-B fluid flows at high Weissenberg numbers. The standard artificial diffusion in the form of a Laplacian of the extra stress tensor is compared with a newly proposed approach using a discrete time derivative of the Laplacian of the extra stress tensor. Both methods are implemented in a finite element code and demonstrated in the solution of a viscoelastic fluid flow in a two-dimensional corrugated channel for a range of Weissenberg numbers. The numerical simulations have shown that this new temporal stress diffusion not only efficiently stabilizes numerical simulations, but also vanishes when the solution reaches a steady state. It is demonstrated that in contrast to the standard tensorial diffusion, the temporal artificial stress diffusion does not affect the final solution.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

    404

  • Kód UT WoS článku

    000755539700001

  • EID výsledku v databázi Scopus

    2-s2.0-85123628621