Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Not all Kripke models of HA are locally PA

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00553323" target="_blank" >RIV/67985840:_____/22:00553323 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/22:10456572

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.aim.2021.108126" target="_blank" >https://doi.org/10.1016/j.aim.2021.108126</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2021.108126" target="_blank" >10.1016/j.aim.2021.108126</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Not all Kripke models of HA are locally PA

  • Popis výsledku v původním jazyce

    Let K be an arbitrary Kripke model of Heyting Arithmetic, HA. For every node k in K, we can view the classical structure of k, Mk as a model of some classical theory of arithmetic. Let T be a classical theory in the language of arithmetic. We say K is locally T, iff for every k in K, Mk⊨T. One of the most important problems in the model theory of HA is the following question: Is every Kripke model of HA locally PA? We answer this question negatively. We introduce two new Kripke model constructions to this end. The first construction actually characterizes the arithmetical structures that can be the root of a Kripke model K⊩HA+ECT0 (ECT0 stands for Extended Church Thesis). The characterization says that for every arithmetical structure M, there exists a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr=M iff M⊨ThΠ(PA). One of the consequences of this characterization is that there is a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr⊭IΔ1 and hence K is not even locally IΔ1. The second Kripke model construction is an implicit way of doing the first construction which works for any reasonable consistent intuitionistic arithmetical theory T with a recursively enumerable set of axioms that has the existence property. We get a sufficient condition from this construction that describes when for an arithmetical structure M, there exists a rooted Kripke model K⊩T with the root r such that Mr=M. As applications of this sufficient condition, we construct two new Kripke models. The first one is a Kripke model K⊩HA+¬θ+MP (θ is an instance of ECT0 and MP is Markov's principle) which is not locally IΔ1. The second one is a Kripke model K⊩HA such that K forces exactly the sentences that are provable from HA, but it is not locally IΔ1. Also, we will prove that every countable Kripke model of intuitionistic first-order logic can be transformed into another Kripke model with the full infinite binary tree as the Kripke frame such that both Kripke models force the same sentences. So with the previous result, there is a binary Kripke model K of HA such that K is not locally IΔ1.

  • Název v anglickém jazyce

    Not all Kripke models of HA are locally PA

  • Popis výsledku anglicky

    Let K be an arbitrary Kripke model of Heyting Arithmetic, HA. For every node k in K, we can view the classical structure of k, Mk as a model of some classical theory of arithmetic. Let T be a classical theory in the language of arithmetic. We say K is locally T, iff for every k in K, Mk⊨T. One of the most important problems in the model theory of HA is the following question: Is every Kripke model of HA locally PA? We answer this question negatively. We introduce two new Kripke model constructions to this end. The first construction actually characterizes the arithmetical structures that can be the root of a Kripke model K⊩HA+ECT0 (ECT0 stands for Extended Church Thesis). The characterization says that for every arithmetical structure M, there exists a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr=M iff M⊨ThΠ(PA). One of the consequences of this characterization is that there is a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr⊭IΔ1 and hence K is not even locally IΔ1. The second Kripke model construction is an implicit way of doing the first construction which works for any reasonable consistent intuitionistic arithmetical theory T with a recursively enumerable set of axioms that has the existence property. We get a sufficient condition from this construction that describes when for an arithmetical structure M, there exists a rooted Kripke model K⊩T with the root r such that Mr=M. As applications of this sufficient condition, we construct two new Kripke models. The first one is a Kripke model K⊩HA+¬θ+MP (θ is an instance of ECT0 and MP is Markov's principle) which is not locally IΔ1. The second one is a Kripke model K⊩HA such that K forces exactly the sentences that are provable from HA, but it is not locally IΔ1. Also, we will prove that every countable Kripke model of intuitionistic first-order logic can be transformed into another Kripke model with the full infinite binary tree as the Kripke frame such that both Kripke models force the same sentences. So with the previous result, there is a binary Kripke model K of HA such that K is not locally IΔ1.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Svazek periodika

    397

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    108126

  • Kód UT WoS článku

    000793112500025

  • EID výsledku v databázi Scopus

    2-s2.0-85120862006