Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

General facts on the Scott adjunction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557874" target="_blank" >RIV/67985840:_____/22:00557874 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10485-021-09666-6" target="_blank" >https://doi.org/10.1007/s10485-021-09666-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10485-021-09666-6" target="_blank" >10.1007/s10485-021-09666-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    General facts on the Scott adjunction

  • Popis výsledku v původním jazyce

    We introduce, comment and develop the Scott adjunction, mostly from the point of view of a category theorist. Besides its technical and conceptual aspects, in a nutshell we provide a categorification of the Scott topology over a posets with directed suprema. From a technical point of view we establish an adjunction between accessible categories with directed colimits and Grothendieck topoi. We show that the bicategory of topoi is enriched over the 2-category of accessible categories with directed colimits and it has tensors with respect to this enrichment. The Scott adjunction (re-)emerges naturally from this observation.

  • Název v anglickém jazyce

    General facts on the Scott adjunction

  • Popis výsledku anglicky

    We introduce, comment and develop the Scott adjunction, mostly from the point of view of a category theorist. Besides its technical and conceptual aspects, in a nutshell we provide a categorification of the Scott topology over a posets with directed suprema. From a technical point of view we establish an adjunction between accessible categories with directed colimits and Grothendieck topoi. We show that the bicategory of topoi is enriched over the 2-category of accessible categories with directed colimits and it has tensors with respect to this enrichment. The Scott adjunction (re-)emerges naturally from this observation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-31529X" target="_blank" >GX20-31529X: Abstraktní konvergenční schémata a jejich složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Categorical Structures

  • ISSN

    0927-2852

  • e-ISSN

    1572-9095

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    569-591

  • Kód UT WoS článku

    000745801000002

  • EID výsledku v databázi Scopus

    2-s2.0-85123115735