100 years of the Friedmann equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559513" target="_blank" >RIV/67985840:_____/22:00559513 - isvavai.cz</a>
Výsledek na webu
<a href="https://css2022.math.cas.cz/proceedingsCSS2022.pdf" target="_blank" >https://css2022.math.cas.cz/proceedingsCSS2022.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
100 years of the Friedmann equation
Popis výsledku v původním jazyce
In 1922, Alexander Friedmann applied Einstein’s equations to a three-dimensional sphere to describe the evolution of our universe. In this way he obtained a nonlinear ordinary differential equation (called after him) for the expansion function representing the radius of that sphere. At present, the standard cosmological ΛCDM model of the universe is based just on the Friedmann equation. It needs a significant amount of dark matter, about six times that of the usual baryonic matter, besides an even larger amount of dark energy to be consistent with the real universe. But to date, both dark matter and dark energy have remained without concrete evidence based on direct physical measurements. We present several arguments showing that such a claimed amount of dark matter and dark energy can only be the result of vast overestimation, incorrect extrapolations, and that it does not correspond to the real universe. The spatial part of our universe seems to be locally flat and thus it can be locally modeled by the Euclidean space. However, Friedmann did not consider the flat space with zero curvature. Therefore, in the second part of this paper we will derive a general form of the corresponding metric tensor satisfying Einstein’s equations with zero right-hand side.
Název v anglickém jazyce
100 years of the Friedmann equation
Popis výsledku anglicky
In 1922, Alexander Friedmann applied Einstein’s equations to a three-dimensional sphere to describe the evolution of our universe. In this way he obtained a nonlinear ordinary differential equation (called after him) for the expansion function representing the radius of that sphere. At present, the standard cosmological ΛCDM model of the universe is based just on the Friedmann equation. It needs a significant amount of dark matter, about six times that of the usual baryonic matter, besides an even larger amount of dark energy to be consistent with the real universe. But to date, both dark matter and dark energy have remained without concrete evidence based on direct physical measurements. We present several arguments showing that such a claimed amount of dark matter and dark energy can only be the result of vast overestimation, incorrect extrapolations, and that it does not correspond to the real universe. The spatial part of our universe seems to be locally flat and thus it can be locally modeled by the Euclidean space. However, Friedmann did not consider the flat space with zero curvature. Therefore, in the second part of this paper we will derive a general form of the corresponding metric tensor satisfying Einstein’s equations with zero right-hand side.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference Cosmology on Small Scales 2022 : Dark Energy and the Local Hubble Expansion Problem
ISBN
978-80-85823-72-1
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
131-144
Název nakladatele
Institute of Mathematics CAS
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
21. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—