(Verifiable) delay functions from Lucas sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579718" target="_blank" >RIV/67985840:_____/23:00579718 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-48624-1_13" target="_blank" >https://doi.org/10.1007/978-3-031-48624-1_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-48624-1_13" target="_blank" >10.1007/978-3-031-48624-1_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
(Verifiable) delay functions from Lucas sequences
Popis výsledku v původním jazyce
Lucas sequences are constant-recursive integer sequences with a long history of applications in cryptography, both in the design of cryptographic schemes and cryptanalysis. In this work, we study the sequential hardness of computing Lucas sequences over an RSA modulus. First, we show that modular Lucas sequences are at least as sequentially hard as the classical delay function given by iterated modular squaring proposed by Rivest, Shamir, and Wagner (MIT Tech. Rep. 1996) in the context of time-lock puzzles. Moreover, there is no obvious reduction in the other direction, which suggests that the assumption of sequential hardness of modular Lucas sequences is strictly weaker than that of iterated modular squaring. In other words, the sequential hardness of modular Lucas sequences might hold even in the case of an algorithmic improvement violating the sequential hardness of iterated modular squaring. Second, we demonstrate the feasibility of constructing practically-efficient verifiable delay functions based on the sequential hardness of modular Lucas sequences. Our construction builds on the work of Pietrzak (ITCS 2019) by leveraging the intrinsic connection between the problem of computing modular Lucas sequences and exponentiation in an appropriate extension field.
Název v anglickém jazyce
(Verifiable) delay functions from Lucas sequences
Popis výsledku anglicky
Lucas sequences are constant-recursive integer sequences with a long history of applications in cryptography, both in the design of cryptographic schemes and cryptanalysis. In this work, we study the sequential hardness of computing Lucas sequences over an RSA modulus. First, we show that modular Lucas sequences are at least as sequentially hard as the classical delay function given by iterated modular squaring proposed by Rivest, Shamir, and Wagner (MIT Tech. Rep. 1996) in the context of time-lock puzzles. Moreover, there is no obvious reduction in the other direction, which suggests that the assumption of sequential hardness of modular Lucas sequences is strictly weaker than that of iterated modular squaring. In other words, the sequential hardness of modular Lucas sequences might hold even in the case of an algorithmic improvement violating the sequential hardness of iterated modular squaring. Second, we demonstrate the feasibility of constructing practically-efficient verifiable delay functions based on the sequential hardness of modular Lucas sequences. Our construction builds on the work of Pietrzak (ITCS 2019) by leveraging the intrinsic connection between the problem of computing modular Lucas sequences and exponentiation in an appropriate extension field.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory of Cryptography: 21st International Conference, TCC 2023, Taipei, Taiwan, November 29–December 2, 2023, Proceedings, Part IV
ISBN
978-3-031-48623-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
27
Strana od-do
336-362
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Taipei
Datum konání akce
29. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001160733700013