Interpolation with restrictions -- role of the boundary conditions and individual restrictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00582254" target="_blank" >RIV/67985840:_____/23:00582254 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/23:00366337
Výsledek na webu
<a href="http://dx.doi.org/10.21136/panm.2022.26" target="_blank" >http://dx.doi.org/10.21136/panm.2022.26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2022.26" target="_blank" >10.21136/panm.2022.26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolation with restrictions -- role of the boundary conditions and individual restrictions
Popis výsledku v původním jazyce
The contribution deals with the remeshing procedure between two computational finite element meshes. The remeshing represented by the interpolation of an approximate solution onto a new mesh is needed in many applications like e.g. in aeroacoustics, here we are particularly interested in the numerical flow simulation of a gradual channel collapse connected with a~severe deterioration of the computational mesh quality. Since the classical Lagrangian projection from one mesh to another is a dissipative method not respecting conservation laws, a conservative interpolation method introducing constraints is described. The constraints have form of Lagrange multipliers enforcing conservation of desired flow quantities, like e.g. total fluid mass, flow kinetic energy or flow potential energy. Then the interpolation problem turns into an error minimization problem, such that the resulting quantities of proposed interpolation satisfy these physical properties while staying as close as possible to the results of Lagrangian interpolation in the L2 norm. The proposed interpolation scheme does not impose any restrictions on mesh generation process and it has a relatively low computational cost. The implementation details are discussed and test cases are shown.
Název v anglickém jazyce
Interpolation with restrictions -- role of the boundary conditions and individual restrictions
Popis výsledku anglicky
The contribution deals with the remeshing procedure between two computational finite element meshes. The remeshing represented by the interpolation of an approximate solution onto a new mesh is needed in many applications like e.g. in aeroacoustics, here we are particularly interested in the numerical flow simulation of a gradual channel collapse connected with a~severe deterioration of the computational mesh quality. Since the classical Lagrangian projection from one mesh to another is a dissipative method not respecting conservation laws, a conservative interpolation method introducing constraints is described. The constraints have form of Lagrange multipliers enforcing conservation of desired flow quantities, like e.g. total fluid mass, flow kinetic energy or flow potential energy. Then the interpolation problem turns into an error minimization problem, such that the resulting quantities of proposed interpolation satisfy these physical properties while staying as close as possible to the results of Lagrangian interpolation in the L2 norm. The proposed interpolation scheme does not impose any restrictions on mesh generation process and it has a relatively low computational cost. The implementation details are discussed and test cases are shown.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Programs and Algorithms of Numerical Mathematics 21
ISBN
978-80-85823-73-8
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
281-292
Název nakladatele
Institute of Mathematics CAS
Místo vydání
Prague
Místo konání akce
Jablonec nad Nisou
Datum konání akce
19. 6. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—