Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

fp-projective periodicity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00575080" target="_blank" >RIV/67985840:_____/24:00575080 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >https://doi.org/10.1016/j.jpaa.2023.107497</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >10.1016/j.jpaa.2023.107497</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    fp-projective periodicity

  • Popis výsledku v původním jazyce

    The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.

  • Název v anglickém jazyce

    fp-projective periodicity

  • Popis výsledku anglicky

    The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

    1873-1376

  • Svazek periodika

    228

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

    107497

  • Kód UT WoS článku

    001067990300001

  • EID výsledku v databázi Scopus

    2-s2.0-85168375225