fp-projective periodicity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00575080" target="_blank" >RIV/67985840:_____/24:00575080 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >https://doi.org/10.1016/j.jpaa.2023.107497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2023.107497" target="_blank" >10.1016/j.jpaa.2023.107497</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
fp-projective periodicity
Popis výsledku v původním jazyce
The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.
Název v anglickém jazyce
fp-projective periodicity
Popis výsledku anglicky
The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat Proj-periodic module is projective, any fp-injective Inj-periodic module is injective, and any Cot-periodic module is cotorsion. It is also known that any pure PProj-periodic module is pure-projective and any pure PInj-periodic module is pure-injective. Generalizing a result of Šaroch and Št'ovíček, we show that every FpProj-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every FpProj-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure PProj-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Svazek periodika
228
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
107497
Kód UT WoS článku
001067990300001
EID výsledku v databázi Scopus
2-s2.0-85168375225